Skip to main content

Cyanobacterial Symbioses

  • Chapter
The Prokaryotes

Abstract

The cyanobacteria appear to be an ancient class of organisms, well adapted to most habitats around the earth and often acting as pioneer “plants.” They are a large and morphologically diverse group of prokaryotes, containing both unicellular and filamentous forms (some with specialized cells). However, sequence data of 16S rRNA have shown that the other major eubacterial taxa diverged significantly before the diversification of the modern photoautotrophic cyanobacteria (Giovannoni et al., 1988). The chloroxybacteria (prochlorophyta) are included in this chapter, because, in a dendrogram constructed by cluster analysis of either 5S or 16S RNA sequences, they are situated in a cluster containing all cyanobacteria as well as the Prochloron (Van den Eynde et al., 1988; Giovannoni et al., 1988). Obviously, the prochlorophytes branched off after the divergence of the cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Agafodorova, M. N., O. A. Gorelova, O. I. Baulina, L. R. Semenova, T. G. Korzhenevskaya, R. G. Butenko, and M. V. Gusev. 1982. Study of initial stages of polyethyleneglycol induced incorporation of cells and spheroplasts of cyanobacteria into isolated tobacco cells and spheroplasts. Biol. Bull. Acad. Sci. USSR (Engl. Translat. IZV Akad. NAUK SSSR Ser. Biol.) 9: 316–323.

    Google Scholar 

  • Ahmadjian, V. 1961. Studies on lichenized fungi. Bryologist 64: 168–179.

    Google Scholar 

  • Ahmadjian, V. 1963. The fungi of lichens. Sci. Am. 208: 122–132.

    PubMed  CAS  Google Scholar 

  • Ahmadjian, V. 1964. Further studies on lichenized fungi. Bryologist 67: 87–98.

    Google Scholar 

  • Ahmadjian, V. 1965. Lichens. Ann. Rev. Microbiol. 19: 120.

    Google Scholar 

  • Ahmadjian, V. 1967. A guide to the algae occuring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–160 (and Table II).

    Google Scholar 

  • Ahmadjian, V. 1973. Methods of isolating and culturing lichen symbionts and thalli, p. 653–659. In: V. Ahmadjian and M. E. Hale (ed.), The lichens. Academic Press, New York.

    Google Scholar 

  • Ahmadjian, V. 1982a. Algal/Fungal symbioses, p. 179–233. In: F. E. Round and D. J. Chapman (ed.), Progress in phycological research. vol. 1. Elsevier Biomed. Press, Amsterdam, The Netherlands.

    Google Scholar 

  • Ahmadjian, V. 1982b. The nature of lichens. Nat.Hist. 91 (March): 31–37.

    Google Scholar 

  • Ahmadjian, V. 1989. Studies on the isolation and synthesis of bionts of the cyanolichen Peltigera canina (Peltigeraceae). Pl. Syst. Evol. 165: 29–38.

    Google Scholar 

  • Ahmadjian, V., and J. B. Jacobs. 1981. Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289: 169–172.

    Google Scholar 

  • Ahmadjian, V., and J. B. Jacobs. 1983. Algal-fungal relationships in lichens: recognition, synthesis, and development p. 147–172. In: L. J. Goff (ed.), Algal symbiosis, 1st ed. Cambridge University Press.

    Google Scholar 

  • Ahmadjian V., and S. Paracer. 1986. Symbiosis, 1st ed, p. 90. University Press New England, Hanover and London.

    Google Scholar 

  • Ahmadjian, V., L. A. Russell and K. C. Hildreth. 1980. Artificial reestablishment of lichens. I. Morphological interactions between the phycobionts of different lichens and the mycobionts Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72:73–89.

    Google Scholar 

  • Aitken, A., and R Y. Stanier 1979. Characterization of peptidoglycan from the cyanelles of Cyanophora paradoxa. J. Gen. Microbiology 112: 219–223.

    CAS  Google Scholar 

  • Allen, M. M. 1968. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 4:1–3. Altmann, R. 1890. Die Elementarorganismen und ihre Beziehungen zu den Zellen. Veit Co., Leipzig.

    Google Scholar 

  • Arad, H., A. Keysari, E. Tel-Or, and D. Kobiler. 1985. A comparison between cell antigens in different isolates of Anabaena azollae. Symbiosis 1: 195–203.

    Google Scholar 

  • Ashton, P. J., and R. D. Walmsley. 1976. The aquatic fern Azolla and its Anabaena symbiont. Endeavour 19: 3943.

    Google Scholar 

  • Bai, K.-Z., S.-L. Yu, W.-L. Chen, S.-Y. Yang, and C. Cui. 1979. The isolation and culture of separate colonies of Azolla and Anabaena azollae. Kexue Tongbao 24: 644–666.

    Google Scholar 

  • Barnet Y. M., M. J. Daft, and W. D. P. Stewart. 1981. Cyanobacteria cyanophage interactions in continuous culture. J. Appl. Bacteriol. 51: 541–552.

    Google Scholar 

  • Bary, A. de, 1879. Die Erscheinung der Symbiose. Verlag Karl J. Trubner, Strassburg.

    Google Scholar 

  • Bayer, M. G., T. L. Maier, U. B. Gebhart, and H. E. A. Schenk. 1990. Cyanellar ferredoxin-NADF’ oxidoreductase of Cyanophora paradoxa is encoded by the nuclear genome and synthesized on cytoplasmatic 80S ribosomes. Curr. Genet. 17: 265–267.

    CAS  Google Scholar 

  • Bayer, M. G., and H. E. A. Schenk. 1986. Biosynthesis of proteins in Cyanophora paradoxa: I. Protein import into the endocyanelle analyzed by micro two-dimensional gel electrophoresis. Endocyt. Cell Res. 3: 197–202.

    Google Scholar 

  • Bayer, M. G. and H. E. A. Schenk. 1989. Ferredoxin of Cyanophora paradoxa Korsh. is encoded on cyanellar DNA. Curr. Genet. 16: 311–313.

    CAS  Google Scholar 

  • Becking, J. H. 1978. Ecology and physiological adaptations of Anabaena in the Azolla-Anabaena symbiosis. Ecol. Bull. (Stockholm) 26: 266.

    Google Scholar 

  • Becking, J. H. 1979. Environmental requirements of Azolla for use in tropical rice production, p. 345. In: Nitrogen and Rice. International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Berthold, R. J., M. A. Borowitzka, and M. A. Mackay. 1982. The ultrastructure of Oscillatoria spongeliae the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia 21: 327–335.

    Google Scholar 

  • Bhaskaran, S., and G. S. Venkataraman. 1958. Occurrence of a Blue-Green Alga in the Nodules ofr Trifolium alexandrinum. Nature 181: 277–278.

    Google Scholar 

  • Bohnert, H. J., and W. Löffelhardt, 1984. Genome and gene organization of the cyanelle DNA from Cyanophora paradoxa in relation to the common organization in chloroplasts, p. 58–68. In: W. Wiessner, D. G. Robinson, and R. C. Starr (ed.), Compartments in algal cells and their interaction. Springer-Verlag Berlin.

    Google Scholar 

  • Boissiere, J.-C.,M.-C. Boissiere, P. Champion-Arnaud, R. Lallement, and J. Wagner, 1987. Le cycle des Nostoc des genres Peltigera et Collema en cultures in vitro et dans le thalle lichenique. Can. J. Bot. 65:1468–1477.

    Google Scholar 

  • Bonnet, H. T. 1990. Nostoc-Gunnera Association, p. 161172. In: A. N. Rai (ed.), CRC Handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.

    Google Scholar 

  • Bourrelly, P. 1960. Un nouveau genre africain d’endocyanose: Glaucocystopsis africana nov. gen. et nov. sp. Comptes Rendues de l’Acad. d. Sci. de Paris 251: 416–418.

    Google Scholar 

  • Boussiba, S., 1988. N2-Fixing cyanobacteria as nitrogen biofertilizer-a study with the isolate Anabaena azollae. Symbiosis 6: 129–138.

    Google Scholar 

  • Bradley, P. M. 1983. Induced in vitro symbiosis using algae and callus of Daucus carota on medium deficient in nitrogen, p. 613–621. In: H. E. A. Schenk and W. Schwemmler (ed.), Endocytobiology II. de Gruyter, Berlin.

    Google Scholar 

  • Bradley, P. M., and C. S. Duke. 1987. Cell culture models to study symbiosis. In: J. J. Lee and J. E Fredrick (ed.), Endocytobiology IV. Ann. NYAS 503: 534–537.

    Google Scholar 

  • Bradley, P. M. 1979. Micromanipulation of cyanelles and a cyanobacterium into higher plant cells. Physiol. Plant. 46: 293–298.

    Google Scholar 

  • Braun-Howland, E. B., and S. A. Nierzwicki-Bauer. 1990. Azolla-Anabaena Symbiosis: Biochemistry, Ultrastructure, and molecular biology, p. 65–118. In: A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.

    Google Scholar 

  • Breiteneder, H., C. Seiser, W. Löffelhardt, C. Michalowski, and H. J. Bohnert. 1988. Physical map and protein gene map of cyanelle DNA from the second known isolate of Cyanophora paradoxa (Kies-strain). Curr. Gen. 13: 199–206.

    CAS  Google Scholar 

  • Brown, D. H. (ed.). 1985. Lichen Physiology and Cell Biology. Plenum Press, New York.

    Google Scholar 

  • Brown, D. H., and R. P. Beckett. 1983. Differential sensitivity of lichens to heavy metals. Ann. Bot. (London) 52: 51–58.

    CAS  Google Scholar 

  • Bryant, D. A., and V. L. Stirewalt, 1990. The cyanelle genome of Cyanophora paradoxa encodes ribosomal proteins not encoded by the chloroplast genomes of higher plants. FEBS Letters 259: 273–280.

    PubMed  CAS  Google Scholar 

  • Bryant, D. A., R. de Lorimier, D. H. Lambert, J. M. Dubbs, V. L. Stirewalt, S. E. Stevens, R. D. Porter, J. Tam, and E. Jay. 1985. Molecular cloning and nucleotide sequence of the a and ß sub-units of allophycocyanin from the cyanelle genome of Cyanophora paradoxa. Proc. Natl. Acad. Sci. USA 82: 3242–3246.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bryant, D. A. 1988. Genetic analysis of phycobilisome biosynthesis, assembly, structure, and function in the cyanobacterium Synechococcus sp. PCC 7002, p. 62–90. In: S. E. Stevens and D. A. Bryant (ed.) Light-energy transduction in photosynthesis: higher plants and bacterial models. Am. Soc. Plant Physiol., Rockville, MD.

    Google Scholar 

  • Bubrick, P., and M. Galun. 1984. Cyanobiont diversity in the Lichinaceae and Heppiaceae. Lichenologist 16: 279–287.

    Google Scholar 

  • Büdel, B. 1985. Blue-green phycobionts in the lichen family Lichinaceae. Arch. Hydrobiol. Suppl. 71/Algological Studies 38 /39: 355–357.

    Google Scholar 

  • Büdel, B., and A. Henssen, 1983. Chroococcidiopsis (Cyanophyceae), a phycobiont in the lichen family Lichinaceae. Phycologia 22: 367–375.

    Google Scholar 

  • Büdel, B., and A. Henssen. 1988. Trebouxia-aggregata and Gloeocapsa-Sanguinea phycobionts in Euosis granatina Lichinaceae. Plant. Syst. Evol. 158: 235–242.

    Google Scholar 

  • Burgoon, A. C., and P. J. Bottino. 1976. Uptake of the nitrogen-fixing blue-green algae Gloeocapsa into protoplasts of tobacco and maize. J. Hered. 67: 223–226.

    Google Scholar 

  • Burnap, R. L., and R. K. Trench. 1989a. The biogenesis of the cyanellae of Cyanophora paradoxa. I. Polypeptide composition of the cyanellae. Proc. R. Soc. Lond. B 238: 53–72.

    CAS  Google Scholar 

  • Burnap, R. L., and R. K. Trench. 1989b. The biogenesis of the cyanellae of Cyanophora paradoxa. II. Pulse-la-belling of cyanellar polypeptides in the presence of transcriptional and translational inhibitors. Proc. R. Soc. Lond. B 238: 73–87.

    PubMed  CAS  Google Scholar 

  • Burnap, R. L., and R. K. Trench. 1989c. The biogenesis of the cyanellae of Cyanophora paradoxa. III. In vitro synthesis of cyanellar polypeptides using separated cytoplasmic and cyanellar RNA. Proc. R. Soc. Lond. B 238: 89–102.

    Google Scholar 

  • Calvert, H. E., and G. A. Peters. 1981. The Azolla-Anabaena azollae relationship. IX. Morphological analysis of leaf cavity hair populations. New Phytol. 89: 327–335.

    Google Scholar 

  • Candales, R., A. D. Antoine, and A. C. Vasconcelos. 1988. Isolation and characterization of the nitrogen-fixing cyanobacteria from different Azolla species, p. 232. In: H. Bothe, E J. de Bruijn, and W. E. Newton (ed.), Nitrogen fixation: Hundred years after. G. Fischer, Stuttgart.

    Google Scholar 

  • Cantrell, A., and D. A. Bryant. 1987. Nucleotide sequence of the genes encoding cytochrome b-559 from the cyanelle genome of Cyanophora paradoxa. Photosynth. Res. 16: 65–81.

    Google Scholar 

  • Cavalier-Smith, T., and J. J. Lee. 1985. Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J. Protozool. 32: 376–379.

    Google Scholar 

  • Champion-Arnaud, P., and R. Lallemant. 1986. Localisation of ammonia assimilation enzyme activities in the course of the cycle of Nostoc filaments isolated from the lichens Peltigera canina (L.) Willd. and Peltigera praetextata (Flörke et Sommerf.) Zopf. Lichen Physiol. Biochem. 1: 104–1 16.

    Google Scholar 

  • Chapman, D. J. 1966. The pigments of the symbiotic algae (cyanomes) of Cyanophora paradoxa and Glaucocystis nostochinearum and two rhodophyceae, Porphyridium aerugineum and Asterocytis ramosa. Arch. Mikrobiol. 55: 17–25.

    CAS  Google Scholar 

  • Cheong, H. S., C. M. Kim, and Y. H. Kang. 1986. Induction of symbiosis between Nostoc muscorum and cultured plant cells. I. Effects of polyamines on the association of Nostoc muscorum with tobacco and soybean cultured cells. Korean J. Bot. 29: 67–75.

    Google Scholar 

  • Cheong, H. S., B. Hwang, and Y. H. Kang. 1987. Induction of symbiosis between Nostoc muscorum and cultured plant cells. II. Changes of nitrogen fixation ability and morphology by association of Nostoc muscorum with cultured tobacco cells. Korean J. Bot. 30: 257–266.

    CAS  Google Scholar 

  • Chodat, R. 1919. Sur un Glaucocystis et sa position sys- tematique. Bull. Soc. Bot. Geneve 2 (11): 42–49.

    Google Scholar 

  • Cohn, E 1972. Ueber parasitische Algen. Beitr. Biol. Pflanz. 1: 87–108.

    Google Scholar 

  • Cohn, J., and R. N. Renlund. 1953. Notes on Azolla caroliniana. Am. Fern J. 43: 7.

    Google Scholar 

  • Colwell, G. L., and C. E. Wickstrom. 1976. Cell, cyanelle, and chlorophyll a relationships in Glaucocystis nostochinearum Itz. J. Phycol. 12 (Suppl.): 11.

    Google Scholar 

  • Cowen, R. 1988. The role of algal symbiosis in reefs through time. Palaios 3: 221–227.

    Google Scholar 

  • Cox, G. C., R. G. Hiller, and A. W. D. Larkum. 1985. An unusual cyanophyte containing phycobilin and symbiotic with ascidians and sponges. Mar. Biol. (Berlin) 89: 149–164.

    CAS  Google Scholar 

  • Coxson, D. S., G. P. Harris, and K. A. Kershaw. 1982. Physiological-environmental interactions. XV. Contrasting gas exchange patterns between a lichenized and nonlichenized terrestrial Nostoc cyanophyte. New Phytologist 92: 161–172.

    Google Scholar 

  • Culberson, C. E, and V. Ahmadjian. 1980. Artificial reestablishment of lichens. II. Secondary products of resynthesized Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72: 90–109.

    CAS  Google Scholar 

  • Culberson, C. E, W. L. Culberson, and C. F. Johnson. 1977. Second Supplement to Chemical and Botanical Guide to Lichen Products. 400 pp. The American Bryological and Lichenological Society, St. Louis.

    Google Scholar 

  • Da Silva, E. J., L. E. Henricksson, and E. Henricksson. 1973. Effects of pesticides on asymbiotic and symbiotic nitrogen fixing blue-green algae 35pp. UNESCO and WHO. Global impacts of applied microbiology. 4th Int. Conf., Sao Paulo, Brazil.

    Google Scholar 

  • Degelius, G. 1954. The lichen genus Collema in Europe. Symb. bot. upsal. 13:1–499, Plate I-XXVII.

    Google Scholar 

  • Dodds, W. K. 1989. Photosynthesis of two morphologies of Nostoc-Parmeloides cyanobacteria as related to current velocities and diffusion patterna. J. Phycol. 25: 258–262.

    Google Scholar 

  • Drum, R. W. and S. Pankratz. 1965. Fine structure of an unusual cytoplasmic inclusion in the diatom genus, Rhopalodia. Protoplasma 60: 141–149.

    Google Scholar 

  • Duclaux, G., E Lafargue, and M. Wahl. 1988. First report of Prochloron in association with the genus Polysyncraton didemnid ascidian (Tunicata). Vieu Milieu 38: 145–148.

    Google Scholar 

  • Duebbeler, P. 1980. Phycorella scytonematis new-genus new-species Dothideales a new symbiont with Scytonema. Sydowia Ann. Mycol. 33: 33–38.

    Google Scholar 

  • Drew, E. A., and D. C. Smith. 1967. Studies in the physiology of lichens. VII. The physiology of the Nostoc symbionts of Peltigera polydactyla compared with cultured and free-living forms. New Phytologist 66: 379–388.

    Google Scholar 

  • Echlin, P. 1966. The fine structure of Glancocystis nostochinearum in relation to the cyanophytic origin of chloroplaste, p. 285–286. In: R. Uyeda (ed.), Proceedings of the 6th International Conference on Electron Microscopy, vol. 2. Maruzen Co., Tokyo, Japan.

    Google Scholar 

  • Echlin, P. 1970. The photosynthetic apparatus in prokaryotes and eukaryotes, p. 231–248. In: H. P. Charles and B. C. J. G. Knight (ed.), 20th Symp. Soc. Gen. Microbiology. University Press, Cambridge.

    Google Scholar 

  • Enderlin, C. S., and J. C. Meeks. 1983. Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 153: 157–165.

    Google Scholar 

  • Eriksson, O. E., and D. C. Hawksworth. 1988. Outline of the ascomycetes. Systema Ascomycetum 7: 119–191.

    Google Scholar 

  • Evrard, J.-L., C. Johnson, I. Janssen, W. Löffelhardt, J.-H. Weil and M Kuntz. 1990a. The cyanelle genorne of Cyanophora paradoxa, unlike chloroplast genome, codes for the ribosomal L3 protein. Nucleic Acids Res. 18: 1115–1119.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Evrard, J.-L., M. Kuntz, and J. H. Weil. 1990b. The nucleotide sequence of five ribosomal protein genes from

    Google Scholar 

  • the cyanelles of Cyanophora paradoxa: Implications concerning the phylogenetic relationship between cyanelles and chloroplasts. J. Mol. Evol. 30:16–25.

    Google Scholar 

  • Fenwick, M. G. 1966. Some rare and interesting algae from Port Radium, N. W. T. Canada. Trans. Amer. Microsc. Soc. 85: 477–480.

    Google Scholar 

  • Filin, N. I., and V. R. Filin. 1989. The cyanellae in the capsule of Andreaea rupestris Hedw. Byull. Mosk. OVA ISPYT PRIR OTD Biol. 94: 93–101.

    Google Scholar 

  • Floener, L., and H. Bothe. 1980. Nitrogen fixation in Rhopalodia gibba a diatom containing blue-greenish inclusions symbiotically, p. 541–552. In: W. Schwemmler and H. E. A. Schenk (ed.), Endocytobiology I: Endo-symbiosis and Cell Biology. W. De Gruyter, Berlin.

    Google Scholar 

  • Floener, L., G. Danneberg, and H. Bothe. 1982. Metabolic activities in Cyanophora paradoxa and its cyanelles. I. The enzymes of assimilatory nitrate reduction. Planta 156: 70–77.

    PubMed  CAS  Google Scholar 

  • Fogg, G. E. 1982. Marine plankton, p. 491–513. In: N. G. Carr and B. A. Whitton (ed.), The Biology of cyanobacteria. Blackwell, Oxford.

    Google Scholar 

  • Foissner, W. 1980. Malacophrys viridis, new-species, Malacophryidae, new family, a ciliate protozoa ciliophora with features of the Kinetophragminophora and Oligohymenophora. Zool. Scr. 9: 81–88.

    Google Scholar 

  • Fowler, K. 1975. Megaspores and massulae of Azolla prisca from the oligocene of the Isle of Wight. Paleontology 18: 483.

    Google Scholar 

  • Franche, C., and G. Cohen-Bazire. 1987. Evolutionary divergence in the nifH.D.K. gene region among nine symbiotic Anabaena azollae and between Anabaena azollae and some free-living heterocystous cyanobacteria. Symbiosis 3: 159–178.

    Google Scholar 

  • Fritsch, E E. 1952. The structure and reproduction of the algae, vol. 2, p. 768–898. University Press, Cambridge.

    Google Scholar 

  • Fukuda, I. 1981. A possible literature survey on a thermal alga Cyanidium caldarium Geitler. (III), p. 11–15. Science University of Tokyo, Japan.

    Google Scholar 

  • Gaines, G. and M. Elbrächter. 1987. Dinoflagellates as symbiont hosts, p. 250–251. In: E. J. R. Taylor (ed.), The biology of dinoflagellates. Blackwell Scientific, Oxford, UK.

    Google Scholar 

  • Gallucci, K. K., and H. W. Paerl. 1983. Pseudomonas aeruginosa chemotaxis associated with blooms of nitrogen fixing blue-green algae cyanobacteria.

    Google Scholar 

  • Galun, M. (ed.) 1988. Handbook of lichenology. CRC Press, Inc., Boca Raton, Fl.

    Google Scholar 

  • Galun, M. 1990. Lichen research: an overview with some emphases (review article), p. 161–168. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis, and D. C. Smith (ed.), Endocytobiology IV. INRA, Paris.

    Google Scholar 

  • Galun, M., and Bubrick, P. 1984. Physiological interactions between the partners of the lichen symbiosis, p. 362401. In: H. E. Linskens and J. Heslop-Harrison (ed.), Cellular interactions, encyclopedia of plant physiology, vol. 17. Springer-Verlag, Berlin.

    Google Scholar 

  • Gates, J. E., R. W. Fisher, and R. A. Candler. 1980. The occurence of coryneform bacteria in the leaf cavity of Azolla Arch. Microbiol. 127: 163.

    Google Scholar 

  • Gates, J. E., R. W. Fisher, T. W. Goggin, and N. I. Azrolan, 1981. Antigenic differences between Anabaena azollae fresh from the Azolla fern leaf cavity and free-living cyanobacteria. Arch. Microbiol. 128: 126–129.

    Google Scholar 

  • Geitler, L. 1923. Der Zellbau von Glaucocystis nostochinearum und Gloeochaete wittrockiana und die Chromatophoren-Symbiose-theorie von Mereschkowsky. Arch. Protistenk. 47: 1–24.

    Google Scholar 

  • Geitler, L. 1936. Schizophyzeen. In: G. Tischler and A. Pascher, (ed.), Handbuch der Pflanzenanatomie, vol. 7, IB: 106–117. Borntraeger, Berlin.

    Google Scholar 

  • Geitler, L. 1953. Allogamie und Autogamie bei der Diatomee Denticulata tenuis und die Geschlechtsbestimmung der Diatomeen. ()sterr. Bot. Z. 100: 331–352.

    Google Scholar 

  • Geitler, L. 1959. Syncyanosen, p. 530–545. In: E. Ruhland, (ed.), Handbuch der Pflanzenphysiologie, vol. II. Springer-Verlag, Berlin.

    Google Scholar 

  • Geitler, L. 1977. Zur Entwicklungsgeschichte der Epithemiaceen Epithemia, Rhopalodia und Denticula (Diatomophyceae) und ihre vermutlich symbiotischen Sphäroidkörper. Plant Syst. Evol. 128: 259–275.

    Google Scholar 

  • Giddings, T. H., C. Wasmann, and L. A. Staehelin. 1983. Structure of the thylakoids and envelope membranes of the cyanelles of Cyanophora paradoxa. Plant Physiol. 71: 409–419.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Giovannoni, S. J., S. Turner, G. J. Olsen, S. Barns, D. J. Lane, and N. R. Pace, 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170: 3584–3592.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gorham, P. R., J. M. McLachlan, U. T. Hammer, and W. K. Kim. 1964. Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Breb. Verh. Int. Verein. theor. angew. Limnol. 15: 796–804.

    Google Scholar 

  • Granhall, U., and A. V. Hofsten. 1976. Nitrogenase activity in relation to intracellular organisms in Sphagnum mosses. Physiologia Plantarum 36: 88–94.

    Google Scholar 

  • Green, T. G. A., and D. C. Smith. 1974. Lichen physiology, part 14. Differences between lichen algae in symbiosis and in isolation. New Phytol. 73: 753–766.

    CAS  Google Scholar 

  • Griffiths, B. M. 1915. On Glaucocystis nostochinearum Itzigsohn. Ann. Bot. 29: 423–432.

    Google Scholar 

  • Griffiths, D. J., and Luong-Van Thinh. 1987. Photosynthesis by in situ and isolated Prochloron (Prochlorophyta) associated with didemnid ascidians. Symbiosis 3: 109–122.

    Google Scholar 

  • Grilli Caiola, M., C. Forni, and M. Castagnola. 1988. Bacteria in the Azolla-Anabaena association. Symbiosis 5: 185–198.

    Google Scholar 

  • Gusev, M. V., and T. G. Korzhenevskaya, 1990. Artificial Associations, p. 173–230. In: A. N. Rai (ed.) CRC Handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.

    Google Scholar 

  • Gusev, M. V., R. G. Butenko, and T. G. Korzhenevskaya. 1984. Cyanobacteria in association with cultivated cells of higher plants, p. 1–40. In: V. P. Skulachev (ed.), Sov. Scient. Rev./Sect. D. Physicochem. Biol. Rev., vol. 4. Harwood Acad. Publ., New York.

    Google Scholar 

  • Gusev, M. V., T. G. Korzhenevskaya, L. V. Pyvovarova, OA. Baulina, and R. G. Butenko. 1986. Introduction of a nitrogen-fixing cyanobacterium into tobacco shoot regenerates. Planta 167: 1–8.

    PubMed  CAS  Google Scholar 

  • Hale, M. E., and W. L. Culberson. 1966. A third checklist of the lichens of the continental United States and Canada. Synonyms and excluded names. The Bryologist 69: 141–182.

    Google Scholar 

  • Hale, M. E., 1983. The biology of lichens (3rd Edition). 190 pp. E. Arnold, London.

    Google Scholar 

  • Hall, W. T., and G. Claus, 1963. Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa Korschikoff. J. Cell Biol. 19: 551–563.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hall, W. T., and G. Claus, 1967. Ultrastructural studies on the cyanelles of Glaucocystis nostochinearum Itzigsohn. J. Phycol. 3: 37–51.

    Google Scholar 

  • Hallbom, L., and B. Bergman. 1979. Influence of certain herbicides and a forest fertilizer on the nitrogen fixation by the lichen Peltigera praetextata. Oecologia (Berlin) 40: 19–28.

    Google Scholar 

  • Hawksworth, D. L. 1988a. The fungal partner, p. 35–38. In: M. Galun (ed.), Handbook of Lichenology, vol. 1. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Hawksworth, D. L. 1988b. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96: 3–20.

    Google Scholar 

  • Hawksworth, D. L., and D. J. Hill. 1984. The lichen-form- ing fungi, 1st ed. Blackie, Glasgow and London.

    Google Scholar 

  • Hawksworth, D. L., and E Rose, 1976. Lichen as pollution monitors. Studies in Biology, no. 66. E. Arnold, London.

    Google Scholar 

  • Heimann, K., Reize, I. B., and M. Melkonian. 1989. The flagellar developmental cycle in algae: flagellar transformation in Cyanophora paradoxa (Glaucocystophyceae). Protoplasma 148: 106–110.

    Google Scholar 

  • Heinhorst, S., and J. M. Shively. 1983. Encoding of both subunits of ribulose-1, 5-bisphosphate carboxylase by organelle genome of Cyanophora paradoxa. Nature 304: 373–374.

    CAS  Google Scholar 

  • Heinz, G. 1973. Versuche zur Isolierung der lysozymempfindlichen Stützmembran von Cyanocyta korschikoffiana, der Endocyanelle aus Cyanophora paradoxa KORSCH. Dipl.Arb., University of Tübingen.

    Google Scholar 

  • Henriksson, E. 1951. Nitrogen fixation by a bacteria-free, symbiotic Nostoc strain isolated from Collema. Physiol. Plantarum 4: 542–545.

    CAS  Google Scholar 

  • Henssen, A., and H. M. Jahns. 1974. Lichenes. Thieme, Stuttgart.

    Google Scholar 

  • Herdman, M., and R. Y. Stanier. 1977. The cyanelle: chlo- roplast or endosymbiotic prokaryote? FEMS 1: 7–12.

    CAS  Google Scholar 

  • Hill, D. J. 1975. The pattern of development of Anabaena in the Azolla-Anabaena symbiosis. New Phytol. 78: 611–616.

    Google Scholar 

  • Hill, D. J. 1977. The role of Anabaena in the Azolla-Anabaena symbiosis. Planta 122: 179–184.

    Google Scholar 

  • Hill, D. J. 1989. The control of the cell cycle in microbial symbionts. New Phytol. 112: 175–184.

    Google Scholar 

  • Hills, L. V., and B. Gopal. 1967. Azolla primaeva and its phylogenetic significance. Can. J. Bot. 45: 1179–1191.

    Google Scholar 

  • Holst„ R. W. and J. H. Yopp. 1979. Studies of the Azolla and Anabaena symbiosis using Azolla mexicana. I. Growth in nature and laboratory. Am. Fern J. 69: 17–25.

    Google Scholar 

  • Honegger, R. 1980. Zytologie der Blaualgen-HornmoosSymbiose bei Anthoceros laevis aus Island. Flora 170: 290–302.

    Google Scholar 

  • Honegger, R. 1984. Cytological aspects of the mycobiontphycobiont relation in lichens. Haustorial types phycobiont cell wall types and ultrastructure of the cell surface layers in some cultured and symbiotic mycobionts and phycobionts. Lichenologist (Oxf) 16: 1 1127.

    Google Scholar 

  • Honegger, R., and V. Kutasi. 1990. Anthraquinone production in three aposymbiotically cultured teloschistalean lichen mycobionts: the role of the carbon source, p. 161–168. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis, and D. C. Smith (ed.), Endocytobiology IV. Institut National de la Recherche Agronomique, Paris.

    Google Scholar 

  • Hutstedt, F. 1930. Die Kieselalgen Deutschlands, Osterreichs und der Schweiz. Rabenhorsts KryptogamenFlora 7 ( 1 ). Akad. Verl. GmbH, Leipzig.

    Google Scholar 

  • Jacob, F. 1961. Zur Biologie von Codium bursa (L.) Agardh und seiner endophytischen Cyanophyceen. Arch. Protistenk. 105: 345–406.

    Google Scholar 

  • Jehn, U., and K. Zetsche. 1988. In vitro synthesis of the cyanelle proteins of Cyanophora paradoxa by isolated cyanelles and cyanelle RNA. Planta 173: 58–60.

    PubMed  CAS  Google Scholar 

  • Jennings, J. B., and S. R. Gelder, 1976. Observations on the feeding mechanism diet and digestive physiology of Histriobdella homari an aberrant polychaete symbiotic with north american and european lobsters. Biol. Bull. (Woods Hole) 151: 489–517.

    Google Scholar 

  • Jensen, T. E., and C. C. Bowen. 1970. Cytology of blue-green algae. Part 2: Unusual inclusions in the cytoplasm. Cytologia (Tokyo) 35: 132–152.

    Google Scholar 

  • Kaplan, D., and G. A. Peters. 1988. Interaction of carbon metabolism in the Azolla-Anabaena symbiosis. Symbiosis 6: 53–68.

    CAS  Google Scholar 

  • Kardish, N., M. Kessel, and M. Galun. 1989. Characterization of symbiotic and cultured Nostoc of the lichen Nephroma laevigatum Ach. Symbiosis 7: 257–266.

    Google Scholar 

  • Jordan, W. R, and E R. Rickson. 1971. Cyanophyte cephalodia in the lichen genus Nephroma. Amer. J. Botany 58: 562–568.

    Google Scholar 

  • Kawaguti, S. 1971. Blue-green algae in echiuroid worms, p. 265–273. In: T. C. Chang (ed.), Aspects of the biology of symbiosis. Butterworth, London.

    Google Scholar 

  • Kershaw, K. A. 1985. Physiological ecology of lichens, p. 293, Cambridge Univ. Press. Cambridge.

    Google Scholar 

  • Kies, L. 1967. Über Zellteilung und Zygotenbildung bei Roya obtusa (Breb.) West et West. Mitt. Staatsinst. Allg. Botanik Hamburg: 35–42.

    Google Scholar 

  • Kies, L. 1974. Elektronenmikroskopische Untersuchungen an Paulinella chromatophora Lauterborn, einer Thekamöbe mit blaugrünen Endosymbionten (Cyanellen). Protoplasma 80: 69–89.

    PubMed  CAS  Google Scholar 

  • Kies, L. 1976. Untersuchungen zur Feinstruktur und taxonomischen Einordnung von Gloeochaete wittrockiana, einer apoplastidalen capsalen Alge mit blaugrünen Endosymbionten (Cyanellen). Protoplasma 87: 419–446.

    Google Scholar 

  • Kies, L. 1979. Zur systematischen Einordnung von Cyanophora paradoxa, Gloeochaete wittrockiana und Glaucocystis nostochinearum. Ber. Deutsch. Bot. Ges. 92: 445–454.

    Google Scholar 

  • Kies, L. 1980. Morphology and systematic position of some endocyanomes, p. 7–19. In: W. Schwemmler and H. E. A. Schenk (ed.), Endocytobiology. I. Endosymbiosis and cell biology. W. de Gruyter, Berlin, Germany.

    Google Scholar 

  • Kies, L. 1984a. Einzeller mit blaugrünen Endosymbionten (Cyanellen) als Objekte der Symbioseforschung und Modell-organismen für die Evolution der Chloroplasten. Biol. Rdsch. 22: 145–157.

    CAS  Google Scholar 

  • Kies, L. 1984b. Cytological aspects of blue-green algal endosymbiosis, p. 191–199. In: W. Wiessner, D. Robinson, and R. C. Starr (ed.), Compartments in algal cells and their interaction. Springer-Verlag Berlin.

    Google Scholar 

  • Kies, L. 1989. Ultrastructure of Cyanoptyche gloeocystis f. dispersa (Glaucocystophyceae) and their cyanelles. Pl. Syst. Evol. 164: 65–73.

    Google Scholar 

  • Kies, L., and B. P. Kremer. 1979. Function of Cyanelles in the Thecamoeba Paulinella chromatophora. Naturwissenschaften 66: 578.

    CAS  Google Scholar 

  • Kies, L., and B. P. Kremer. 1986a. Cyanellen-Endocytobionten oder Zellorganellen? BIUZ 16: 106–112.

    Google Scholar 

  • Kies, L., and B. P. Kremer. 1986b. Typification of the Glaucocystophyta. Taxon 35: 128–133.

    Google Scholar 

  • Kies, L., and B. P. Kremer. 1989. Phylum Glaucocystophyta, p. 152–166. In: L. Margulis, D. J. Chapman, and J. Corliss (ed.), Handbook of protoctists. Jones and Bartlett, Boston, MA.

    Google Scholar 

  • Kimor, B., E M. H. Reid, and J. B. Jordan. 1978. An unusual occurence of Hemiaulus membranaceus Cleve (Bacillariophyceae) with Richelia intracellularis Schmidt (Cyanophyceae) off the coast of Southern California in October 1976. Phycologia 17: 162–166.

    Google Scholar 

  • Klaveness, D. 1984. Studies on the morphology, food selection and growth of 2 planktonic freshwater strains of Coleps sp. Protistologia 20: 335–350.

    Google Scholar 

  • Kleinhaus, S., and A. D. Kaiser. 1988. Ecology and bio-mechanical consequences of living together induced morphological change in a Nostoc and Cricotopus symbiosis. Am. Zool. 28: 34A.

    Google Scholar 

  • Kleining, H., P. Beyer, C. Schubert, B. Liedvogel, and E Lutke-Brinkhaus. 1986. Cyanophora paradoxa: fatty acids and fatty acid synthesis in vitro. Z. Naturforsch. 41c: 169–171.

    Google Scholar 

  • Knapp, E., 1933. Über Geosiphon pyriforme Fr. Wettst., eine intrazelluläre Pilz-Algen-Symbiose. Ber. Bot. Ges. 51: 210–216.

    Google Scholar 

  • Ko, K., J. M. Jaynes, and N. A. Straus. 1985. Homology between the cyanelle DNA of Cyanophora paradoxa and the chloroplast DNA of Vicia faba. Plant Science 42: 115–123.

    CAS  Google Scholar 

  • Kohlmeyer, J. 1974. Higher fungi as parasites and symbionts of algae. Veröff. Inst. Meeresforsch. Bremerh. Suppl. 5: 339–356.

    Google Scholar 

  • Kohlmeyer, J., and E. Kohlmeyer. 1979. Submarine lichens and lichenlike associations, p. 70–78. In: Marine mycology: The higher fungi, Academic Press, New York.

    Google Scholar 

  • Kohlmeyer, J., and B. Volkmann-Kohlmeyer. 1988. Halographis (Opegraphales), a new endolithic lichenoid from corals and snails. Can.J.Bot. 66: 1138–1141.

    Google Scholar 

  • Konar, R. N., and R. J. Kapoor. 1972. Anatomical studies on Azolla pinnata. Phytomorphology 22: 211–223.

    Google Scholar 

  • Koray, T. 1988. Symbiotic associations in microplankton of Izmir Bay, Aegean Sea, and their pollution dependent distributions. Doga Biyol. Sensi 12: 46–52.

    Google Scholar 

  • Korinek, J. 1928. Über die Bakteriensymbiose der Oscillatorien. Arch. Protistenk. 51: 98–108.

    Google Scholar 

  • Kratz, W. A. and J. Myers. 1955. Nutrition and growth of several blue-green algae. Am. J. Bot. 42: 282–287.

    CAS  Google Scholar 

  • Kremer, B. P. 1983. Cyanidium caldarium: Rhodophyte, cyanome, or transitional species? p. 963–970. In: H. E. A. Schenk and W. Schemmler (ed.), Endocytobiology. I I. W. de Gruyter, Berlin, Germany.

    Google Scholar 

  • Kremer, B. R, G. B. Feige, and H. A. W. Schneider. 1978. A new proposal for the systematic position of Cyanidium caldarium. Naturwissench. 65: 157–158.

    CAS  Google Scholar 

  • Kremer, B. P., L. Kies, and A. Rostami-Rabet. 1979. Photosynthetic performance of cyanelles in the endocyanomes Cyanophora, Glaucosphaera, Gloeochaete, and Glaucocystis. Z. Pflanzenphys. 92: 303–317.

    CAS  Google Scholar 

  • Kulasooriya, S. A., H. Arad, O. Canaani, E. Tel-Or, and S. Malkin, 1988. Distribution of the N2fixation and photosynthetic activities in the Azolla-Anabaena symbiosis. Symbiosis 6: 177–128.

    Google Scholar 

  • Ladha, J. K., and I. Watanabe. 1982. Antigenic similarity among Anabaena azollae separated from different species of Azolla. Biochem. Biophys. Res. Commun. 109: 675–682.

    PubMed  CAS  Google Scholar 

  • Ladha, J. K., and I. Watanabe. 1984. Antigenic analysis of Anabaena azollae and the role of lectin in the AzollaAnabaena symbiosis. New Phytol. 98: 295–300.

    Google Scholar 

  • Lafargue, E, and G. Duclaux. 1979. First examples in the Caribbean Sea of a symbiotic association between a didemnid ascidian species and a unicellular alga. Cyanophyta, Chroococcales, Trididemnum cyanophorum, new species, and Synechocystis trididemni. Ann. Inst. Oceanogr. 55: 163–184.

    Google Scholar 

  • Lallemant, R. 1985. Le developpement en cultures pures in vitro des mycosymbiotes des lichens. Canad.J.Bot. 63: 681–703.

    Google Scholar 

  • Lallemant, R., J.-C. Boissiere, M.-C. Boissiere, J.-C. Leclerc, P. Velly, and J. Wagner. 1986. La symbiose lichenique: approches nouvelles. Bull. Soc. Bot. Fr. 133, Actual. Bot. 1986 (2): 41–79.

    Google Scholar 

  • Lallemant, R., and D. Savoye. 1985. Lectins and morpho-genesis: Facts and outlooks, p. 335–350. In: D. H. Brown (ed.) Lichen physiology and cell biology. Plenum Publ. Corp., New York.

    Google Scholar 

  • Lambert, D. H., D. A. Bryant, V. Stirewalt, J. M. Dubbs, S. E. Stevens, and R. D. Porter. 1985. Gene map for the Cyanophora paradoxa cyanelle genome. J. Bacteriol. 164: 659–664.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larkum, A. W. D., G. C. Cox, R. G. Hiller, D. L. Parry, and T. R Dibbayawan. 1987. Filamentous cyanophytes containing phycourobilin and symbiosis with sponges and an ascidia of coral reefs. Mar. Biol. (Berlin) 95: 1–14.

    CAS  Google Scholar 

  • Lauterborn, R. 1895. Protozoenstudien: II. Paulinella chromatophora nov.gen., nov.spec., ein beschalter Rhizopode des Süsswassers mit blaugrünen chromatophorenartigen Einschlüssen. Z. Wiss. Zool. 59: 537–544.

    Google Scholar 

  • Lawrey, J. D. 1984. Biology of lichenized fungi. 408 pp. Praeger, New York.

    Google Scholar 

  • Lefort, M. 1965. Sur le chromatoplasma d’une cyanophycee endosymbiotique: Glaucocystis nostochinearum Itzigs. C. R. Hebd. Seances Acad. Sci. D 261: 233–236.

    Google Scholar 

  • Lefort-Tran, M. 1981. Le triple layered organization of the Euglena chloroplast envelope (signification and functions). Ber. Deutsch. Bot. Ges. 94: 463–476.

    Google Scholar 

  • Lemaux, P. G., and A. Grossmann. 1984. Isolation and characterization of a gene for a major light-harvesting polypeptide from Cyanophora paradoxa. Proc. Nat. Ac. Sci. USA 80: 4100–4104.

    Google Scholar 

  • Lewin, R. A. 1984. Prochloron a status report. Phycologia 23: 203–208.

    Google Scholar 

  • Lewin, R. A. 1986. The phylogeny of Prochloron. G. Bot. Ital. 120: 1–14.

    Google Scholar 

  • Lin, Y.-X. 1980. Classification of Azolla and wide use of certain species. Acta Phytotaxon. Sin. 18: 450–456.

    Google Scholar 

  • Lin, C., and I. Watanabe. 1988. A new method for obtaining Anabaena-free Azolla. New Phytol. 108: 341–344.

    Google Scholar 

  • Lin, C., I. Watanabe, C. C. Liu, D. Y. Zheng, and L. E Tang. 1988. Re-establishment of symbiosis to Anabaena-free Azolla, p. 223–227. In: H. Bothe, F. J. de Bruijn, and W. E. Newton (ed.), Nitrogen fixation: Hundred years after. G. Fischer, Stuttgart.

    Google Scholar 

  • Lindblad, P., and B. Bergman. 1990. The Cycad-Cyanobacterial Symbiosis, p. 137–160. In: A. N. Rai (ed.), CRC

    Google Scholar 

  • Handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL. Liu, C. C. 1979. Use of Azolla in rice production in China, p. 375. In: Nitrogen and rice. International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Liu, C. C., W.-C. Wei, and D. Y. Zheng. 1984. Some advances in Azolla research, p. 57. In: C. Veeder and W. E. Newton (ed.), Advances in nitrogen fixation research. Martinus Nijhoff, The Hague, The Netherlands.

    Google Scholar 

  • Löffelhardt, W., H. Mucke, and H. J. Bohnert. 1980. Cyanelle DNA from Cyanophora paradoxa: Analogies to chloroplast DNA, p. 523–530. In: W. Schwemmler and H. E. A. Schenk (ed.), Endocytobiology I. Endosymbiosis and cell biology. de Gruyter, Berlin.

    Google Scholar 

  • Löffelhardt, W., H. Mucke, E. J. Crouse, and H. J. Bohnert. 1983. Comparison of the cyanelle DNA from two different strains of Cyanophora paradoxa. Curr. Gen. 7: 139–144.

    Google Scholar 

  • Lowe, R. L., B. H. Rosen, and G. W. Fairchild. 1984. Endosymbiotic blue-green algae in fresh water diatoms: An advantage in nitrogen poor habitats. J. Phycol. 20 (Suppl.): 24.

    Google Scholar 

  • Lumpkin, T. A., and D. L. Plucknett. 1980. Azolla: Botany, physiology, and use as a green manure. Economic Botany 34: 111–153.

    Google Scholar 

  • Lumpkin, T. A., and D. L. Plucknett. 1982. Azolla as a green manure: Use and management in crop production. Westview Press, Boulder, CO.

    Google Scholar 

  • Mague, T. H., N. M. Weare, and O. Holm-Hansen, 1974. Nitrogen fixation in the North Pacific Ocean. Marine Biol. 24: 109–119.

    CAS  Google Scholar 

  • Maid, U., K. Valentin, and K Zetsche. 1990. The psbA-gene from a red alga resembles those from cyanobacteria and cyanelles. Curr. Gen. 17: 255–259.

    CAS  Google Scholar 

  • Mangeney, E., and S. P. Gibbs. 1987. Immunocytochemical localization of ribulose-1,5-bisphosphate carboxylase/ oxygenase in the cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. Europ. J. Cell Biol. 43: 65–70.

    CAS  Google Scholar 

  • Margulis, L. 1970. Origin of eukaryotic cells. 349 pp. Yale University Press, New Haven.

    Google Scholar 

  • Margulis, L. 1981. Symbiosis in cell evolution. 419 pp. Freeman and Co., San Francisco, CA.

    Google Scholar 

  • Marten, S., and P. Brandt, 1984. The organelle versus endosymbiont problem of Cyanophora paradoxa, p. 6975. In: W. Wiessner, D. G. Robinson, and R. C. Starr (ed.), Compartments in algal cells and their interaction. Springer-Verlag, Berlin.

    Google Scholar 

  • Martinez, L. A., M. W. Silver, J. M. King, and A. L. Allredge, 1983. Nitrogen fixation by floating diatom mats: a new source of nitrogen to oligitrophic ocean waters. Science 221: 152–154.

    PubMed  CAS  Google Scholar 

  • Marton, K. and M. Galun. 1976. In vitro dissociation and reassociation of the symbionts of the lichen Heppia echinulata. Protoplasma 87: 135–143.

    Google Scholar 

  • McCowen, S. M., L. McArthur, and J. E. Gates. 1987. Azolla fern lectins that specifically recognize endosymbiotic cyanobacteria. Curr. Microbiol. 14: 329.

    Google Scholar 

  • Meeks, J. C. 1990. Cyanobacterial-bryophyte associations, p. 43–64. In: A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.

    Google Scholar 

  • Meeks, J. C., C. S. Enderlin, C. M. Joseph, J. S. Chapman, and M. W. L. Lollar. 1985. Fixation of (13N)N2 and transfer of fixed nitrogen in the Anthoceros-Nostoc symbiotic association. Planta 164: 406–414.

    PubMed  CAS  Google Scholar 

  • Meeks, J. C., C. M. Joseph, and R. Haselkorn. 1988. Organization of the nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros. Arch. Microbiol. 150: 61–71.

    PubMed  CAS  Google Scholar 

  • Meeks, J. C., R. L. Malmberg, and C. P. Wolk. 1978. Uptake of auxotrophic cells of a heterocyst-forming cyanobacterium by tobacco protoplasts, and the fate of their associations. Planta 139: 55–60.

    Google Scholar 

  • Mellor, R. B., G. M. Gadd, P. Rowell, and W. D. P. Stewart. 1981. A phytohaemagglutinin from the Azolla-Anabaena symbiosis. Biochem. Biophys. Res. Commun. 99: 13–48.

    Google Scholar 

  • Mereschkowsky, C. 1905. über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zentralbl. 25: 593–604.

    Google Scholar 

  • Mereschkowsky, C. 1910. Biol. Zentralbl. 30:278, 321, 353.

    Google Scholar 

  • Michalowski, C., H. J. Bohnert, and W. Löffelhardt. 1990. A novel allophycocyanin gene (apcD) from Cyanphora paradoxa cyanelles. Nucleic Acids Res. 18: 21–86.

    Google Scholar 

  • Millbank, J. W. 1984. Nitrogen fixation by lichens, p. 197218. In: N. S. Subba Rao (ed.), Current developments in nitrogen fixation. E. Arnold, London.

    Google Scholar 

  • Mollenhauer, D. 1988. Weitere Untersuchungen an Geosiphon pyriforme-einer Lebensgemeinschaft von Pilz und Blaualge. Natur und Museum 118: 289–309.

    Google Scholar 

  • Mollenhauer, D., and R. Mollenhauer, 1988. Geosiphon cultures ahead. Endocyt. Cell Res. 5: 69–73.

    Google Scholar 

  • Moore, A. W. 1969. Azolla: Biology and agronomic significance. Bot. Rev. 35: 17–34.

    Google Scholar 

  • Mora-Osejo L. E. 1977. Contribution to the knowledge of Charophyta of Colombia. Mutisia 41: 1–12.

    Google Scholar 

  • Morden, C. W., and S. S. Golden. 1989. PSB-A genes indicate common ancestry of Prochlorophytes and chloroplaste. Nature 337: 382–385.

    PubMed  CAS  Google Scholar 

  • Neumann-Spallart, C., M. Brandtner, M. Kraus, J. Jakowitsch, M. G. Bayer, T. L. Maier, H. E. A. Schenk, and W. Löffelhardt. 1990. The petFl gene encoding ferredoxin I is located close to the str operon on the cyanelle genome of Cyanophora paradoxa. FEBS Lett. 268: 55–58.

    PubMed  CAS  Google Scholar 

  • Neveux, J., G. Duclaux, E. Lafargue, M. Wahl, and L Devos, 1988. Pigments of some symbiotic cyanobacteria. Vieu Milieu 38: 251–258.

    Google Scholar 

  • Newton, J. W. 1976. Photoproduction of molecular hydrogen by a plant algal symbiotic system. Science 191: 559–561.

    PubMed  CAS  Google Scholar 

  • Newton, J. W., and A. I. Hermann. 1979. Isolation of cyanobacteria from the aquatic fern Azolla. Arch. Microbiol. 120: 161–165.

    Google Scholar 

  • Newton, J. W., and J. F. Cavin. 1985. Liberation of ammonia during nitrogen fixation by a facultatively heterotrophic cyanobacterium. Biochim. Biophys. Acta 809: 44–50.

    CAS  Google Scholar 

  • Nierzwicki-Bauer, S. A. 1990. Azolla-Anabaena symbiosis: Use in agriculture, p. 119–136. In: A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Oberwinkler, E 1970. Die Gattungen der Basidiolichenen. Dtsch. Bot. Ges. Neue Folge 4: 139–169.

    Google Scholar 

  • Oberwinkler, F. 1980. Symbiotic relationships between fungus and alga in basidiolichens, p. 305–315. In: W. Schwemmler, and H. E. A. Schenk (ed.), Endocytobiology. W. de Gruyter Berlin.

    Google Scholar 

  • Oberwinkler, E 1984. Fungus-alga interactions in basidio lichens, p. 739–774. In: H. Hertel (ed.), Beitràge zur Lichenologie, Cramer, Vaduz, Lichtenstein.

    Google Scholar 

  • Olson, R. R. 1986. Photoadaptations of the caribbean colonial ascidian-cyanophyte symbiosis Trididemnum solidum. Biol. Bull. ( Woods Hole ) 170: 62–74.

    Google Scholar 

  • Ozenda, P., and G. Clauzade. 1970. Les Lichens, 1st ed. Masson et Cie., Paris.

    Google Scholar 

  • Pankow, H. 1982. Paulinella chromatophora Lauterb., eine bisher nur im Süßwasser nachgewiesene Thekamöbe, in den Boddengewässern des Darß und des Zingst (südliche Ostsee). Arch.Protistenk. 126: 261–263.

    Google Scholar 

  • Parry, D. 1988. Ascidian-algal symbiosis: II. Photoadaptation in didemnid ascidians with red cyanophytes. Symbiosis 5: 23–33.

    CAS  Google Scholar 

  • Parry, D. L., and P. Kott. 1988. Co-symbiosis in the Ascidiacea. Bull. Mar. Sci. 42: 149–153.

    Google Scholar 

  • Pascher, A. 1914. Über Symbiosen von Spaltpilzen und Flagellaten mit Blaualgen. Ber. Dtsch. Bot. Ges. 32: 339–352.

    Google Scholar 

  • Pascher, A. 1929. Studien über Symbiosen. 1. Über einige Endosymbiosen von Blaualgen in Einzellern. Jahrb. Wiss. Bot. 71: 386–462.

    Google Scholar 

  • Perez-Urria, E., M. Rodriquez, and C. Vicente. 1990. A crossed mechanism of regulation of urease synthesis between lichen symbionts involving specific urease repressors, p. 179–182. In: P. Nardon, V. GianinazziPearson, A. M. Grenier, L. Margulis, and D. C. Smith (ed.), Endocytobiology IV. Institut National de la Recherche Agronomique, Paris.

    Google Scholar 

  • Peters, G. A., and H. E. Calvert. 1983. The Azolla-Anabaena azollae symbiosis, p. 109–145. In: L. J. Goff (ed.), Algal symbiosis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Peters, G. A., and B. C. Mayne. 1974. The Azolla-Anabaena relationship. I. Initial characterization of the association. Plant Physiol. 53: 813–819.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peters, G. A., B. C. Mayne, T. B. Ray, and R. E. Toja. Jr., 1979. Physiology and biochemistry of the Azolla-Anabaena symbiosis, p. 325. In: Nitrogen and rice. International Rice Res. Inst., Los Barios, Philippines.

    Google Scholar 

  • Peters, G. A., R. E. Toia, Jr., W. R. Evans, D. K. Crist, B. C. Mayne, and R. E. Poole. 1980. Characterization and comparison of five Nz fixing Azolla-Anabaena associations. I. Optimization of growth conditions for biomass increase and N content in a controlled environment. Plant Cell Environ. 3: 261–269.

    Google Scholar 

  • Petit, P. 1982. Phytolectins from the nitrogen-fixing lichen Peltigera horizontalis: The binding pattern of primary protein extract. New Phytol. 91: 705–710.

    CAS  Google Scholar 

  • Petro, M. J., and J. E. Gates. 1987. Distribution of Arthrobacter sp. in the leaf cavities of four species of the N-fixing Azolla fern. Symbiosis 3: 41–48.

    Google Scholar 

  • Peveling, E. (ed.). 1987. Problems in lichenology in the Eighties. Bibliotheca Lichenologica, vol. 25, 497 p. J. Cramer, Berlin, Stuttgart, FRG.

    Google Scholar 

  • Pirozynski, K. A., and D. L. Hawksworth (ed.). 1988. Coe-volution of fungi with plants and animals. Academic Press, Oxford.

    Google Scholar 

  • Poelt, J. 1969. Bestimmungsschlüssel europäischer Flechten. J. Cramer, Lehre, FRG.

    Google Scholar 

  • Prasad, B. M. 1961. Glaucocystis nostochinearum (Itzigs.) Rabenhorst in India. Bull. Bot. Soc., Univ. of Saugar 13: 44–45.

    Google Scholar 

  • Pringsheim, E. G. 1958. Organismen mit blaugrünen Assimilatoren. Stud. Plant. Physiol. ( Praha ): 165–184.

    Google Scholar 

  • Pringsheim, E. G. 1963. Farblose Algen. Fischer, Jena, Germany.

    Google Scholar 

  • Rai, A. N. 1990a. Cyanobacteria-fungal symbiosis: The cyanolichens, p. 9–42. In: A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.

    Google Scholar 

  • Rai, A. N. 1990b. Cyanobacteria in symbiosis, p. 1–8. In: A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.

    Google Scholar 

  • Rai, A. N., M. Borthakur, S. Singh, and B. Bergman. 1989. Anthoceros and Nostoc symbiosis. Immunelectronmicroscopic localization of nitrogenase, glutamine synthetase, phycoerythrin and ribulase-1,5-bisphosphate carboxylase-oxygenase in the cyanobiont and the cultured free-living isolate Nostoc 7801. J. Gen. Microbiol. 135: 385–396.

    Google Scholar 

  • Rai, A. N., R Rowell, and W. D. P. Stewart. 1981. Glutamate synthase activity in symbiotic cyanobacteria. J. Gen. Microbiol. 126: 515–518.

    CAS  Google Scholar 

  • Randall, S. A., L. Cheng, and R. A. Lewin. 1987. Characteristics of Prochloron/ Ascidian Symbiosis II. Photosynthesis-Irradiance relationships and carbon balance of associations from Palau, Micronesia. Symbiosis 4: 147–170.

    Google Scholar 

  • Rao, H. S. 1936. The structure and life history of Azolla pinnata R. Brown with remarks on the fossil history of the Hydropterideae. Proc. of the Indian Acad. of Science 2B: 175–200.

    Google Scholar 

  • Reisser, W. 1984. Endosymbiotic cyanobacteria and cyanellae, p. 91–112. In: A. Pirson and M. H. Zimmermann (ed.), Cellular interactions. Encyclopedia of Plant Physiology, New Ser., vol. 17. Springer-Verlag, Berlin.

    Google Scholar 

  • Renner, B. 1980. Untersuchungen zum Einfluß der symbiotischen Alge auf den Stoffwechsel und die Struktur des Flechtenlagers. Dissertation, Philipps-Universitat Marburg (microfiche).

    Google Scholar 

  • Riedl, H. 1977. Micro-Biocoenosis of Anthelia juratzkana. Bryologist 80: 332–334.

    Google Scholar 

  • Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier. 1979. Generic assignements, strain history and properties of pure cultures of Cyanobacteria. J. Gen. Microbiol. 111: 1–61.

    Google Scholar 

  • Robinson, D. G., and R. D. Preston, 197la. Studies on the fine structure of Glaucocystis nostochinearum Itzigs. I. Wall structure. J. Exp. Bot. 22: 635–643.

    Google Scholar 

  • Robinson, D. G., and R. D. Preston. 1971 b. Studies on the fine structure of Glaucocystis nostochinearum Itzigs. II. Membrane morphology and taxonomy. Brit. Phycol. J. 6: 113–128.

    Google Scholar 

  • Rodgers, G. A., and W. D. P. Stewart. 1977. The cyanophyte-hepatic symbiosis. I. Morphology and physiology. New Phytol. 78: 441–458.

    Google Scholar 

  • Rosenberg, G., and H. W. Paerl. 1981. Nitrogen fixation by blue-green algae associated with the siphonous green seaweed Codium decorticatum: Effects on ammonium uptake. Marine Biology 61: 151–158.

    Google Scholar 

  • Rozen, A., H. Arad, M. Schonfeld, and E. Tel-Or. 1986. Fructose supports glycogen accumulation, heterocyst differentiation, dinitrogen fixation and growth of isolated cyanobiont Anabaena azollae. Arch. Microbiol. 145: 187–190.

    CAS  Google Scholar 

  • Rützler, K. 1981. An unusual blue-green alga symbiotic with 2 new species of Ulosa (Porifera: Hymeniacidonidae) from Carrie-Bow Cay Belize. Mr. Ecol. 2: 35–50.

    Google Scholar 

  • Rützler, K. 1988. Mangrove sponge disease induced by cyanobacterial symbionts failure of a primitive immune system. Dis. Aquat. Org. 5: 143–150.

    Google Scholar 

  • Sagan, L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14: 225.

    CAS  Google Scholar 

  • Santesson, R. 1967. On taxonomical and biological relations between lichens and non-lichenized fungi. Bot. Not. 120: 497.

    Google Scholar 

  • Sara, M. 1971. Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis. Marine Biology 11: 214–221.

    Google Scholar 

  • Schaede, R. 1962. In: F. H. Meyer (ed.), Die pflanzlichen Symbiosen. Fischer, Stuttgart.

    Google Scholar 

  • Schenk, H. E. A. 1970. Nachweis einer lysozymempfindlichen Stützmembran der Endocyanellen von Cyanophora paradoxa Korschikoff. Z. Naturforsch. 256: 640–656.

    Google Scholar 

  • Schenk, H. E. A. I973a. Chloroplasten Evolution in biochemischer Sicht, pp. 205. Habilitation. University of Tübingen.

    Google Scholar 

  • Schenk, H. E. A. 1973b. Endocyanosis as a model for chloroplast evolution, p. 195–197. In: G. Drews (ed.), Abstracts of Symposium on prokaryotic photosynthetic organisms. J. Krause, Freiburg, Germany.

    Google Scholar 

  • Schenk, H. E. A. 1977. Inwieweit können biochemische Untersuchungen der Endocyanosen zur Klärung der Plastiden-Entstehung beitragen? Arch. Protistenk. 119: 274–300.

    Google Scholar 

  • Schenk, H. E. A. 1990. Cyanophora paradoxa: a short survey, p. 199–209. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis, and D. C. Smith (ed.), Endocytobiology IV, 4th Intern. Coll. on Endocytobiology and Symbiosis. Institut National de la Recherche Agronomique, Paris.

    Google Scholar 

  • Schenk, H. E. A., and I. Hofer. 1972. About the light and dark fixation of CO, in the cyanoms Cyanophora paradoxa and Glaucocystis nostochinearum and their endocyanelles, p. 2095–2100. In: G. Forti, M. Avron, and A. Melandri (eds.), Proc. of the 2nd Intern. Congress on Photosynthesis Res., Stresa 1971. W. Junk Publ., The Hague, The Netherlands.

    Google Scholar 

  • Schenk, H. E. A., M. G. Bayer, and T. Maier. 1987a. Nitrate assimilation and regulation of biosynthesis and disintegration of phycobiliproteids by Cyanophora paradoxa. Indications for a nitrogen store function of the phycobiliproteids. Endocyt. Cell Res. 4: 167–176.

    Google Scholar 

  • Schenk, H. E. A., M. G. Bayer, and D. Zook. 1987b. Cyanelles-From symbiont to organelle, p. 151–167. In: J. J. Lee and J. F. Fredrick (ed.), Endocytobiology III. Ann. NYAS 503.

    Google Scholar 

  • Schenk, H. E. A., J. Hanf, and M. Neu-Müller. 1983. The phycobiliproteids in Cyanophora paradoxa as accessorie pigments and nitrogen storage proteins. Z. Naturforsch. 34c: 972–977.

    Google Scholar 

  • Schenk, H. E. A. K. Poralla, T. Härtner, R. Deimel, and D. Thiel. 1985. Lipids in Cyanophora paradoxa. I. Unusual fatty acid pattern of Cyanocyta Korschikoffiana. Endocytob. Cell Res. 2: 233–238.

    Google Scholar 

  • Schiller, J. 1954. Neue Mikrophyten aus künstlichen betonierten Wasserbehältern. 2. Mitteilung über neue Cyanosen. Arch. Protistenk. 100: 116–126.

    Google Scholar 

  • Schmidt, B., L. Kies, and A. Weber. 1979. The pigments of Cyanophora paradoxa, Gloeochaete wittrockiana, and Glaucocystis nostochinearum. Arch. Protistenk. 122: 164–170.

    CAS  Google Scholar 

  • Schnepf, E. 1964. Zur Feinstruktur von Geosiphon pyriforme. Arch. Mikrobiol. 49: 112–131.

    Google Scholar 

  • Schnepf, E. 1965. Struktur der Zellwände und Cellulosefi- brillen bei Glaucocystis. Planta (Berlin) 67: 213–224.

    Google Scholar 

  • Schnepf, E. 1966. Organellen-Reduplikation und Zellkompartimentierung, p. 372–393. In: P. Sitte (ed.), Funktionelle und morphologische Organisation der Zelle. 3. Int. Wiss. Konf. Ges. Dtsch. Naturf. u. Ärzte: Probleme der biologischen Reduplikation. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Schnepf, E. 1975. Conference of the Deutsche Forschungsgemeinschaft, cited by W. Schwemmler, 1989, p. 203.

    Google Scholar 

  • Schnepf, E., and R. M. Brown. 1971. On relationships between endosymbiosis and the origin of plastids and mitochondria, p. 299–322. In: J. Reinert and H. Ursprung (ed.), Origin and continuity of cell organelles. Springer-Verlag, Berlin.

    Google Scholar 

  • Schnepf, E., and W. Koch. 1966. Golgi-Apparat und Wasserausscheidung bei Glaucocystis. Z. Pflanzenphysiol. 55: 97–109.

    Google Scholar 

  • Schnepf, E., W. Koch and G. Deichgräber, 1966. Zur Cytologie und taxonomischen Einordnung von Glaucocystis. Arch. Mikrobiol. 55: 149–174.

    Google Scholar 

  • Schwemmler, W. 1979. Mechanismen der Zellevolution. W. de Gruyter, Berlin.

    Google Scholar 

  • Schwemmler, W. 1989. Symbiogenesis, a macro-mechanism of evolution. W. de Gruyter, Berlin.

    Google Scholar 

  • Schwendener, S. 1869. Die Algentypen der Flechtengonidien. In: Programme für die Rektoratsfeier der Universität. Schultze, Basel, Switzerland.

    Google Scholar 

  • Scott, O. T. 1987. Major acyllipids of cyanelles from Glaucocystis nostochinearum. In: J. J. Lee and J. E Fredrick (ed.), Endocytobiology III. Ann. NYAS 503: 555–558.

    Google Scholar 

  • Scott, O. T., R. W. Castenholz, and H. T. Bonnett. 1984. Evidence for a peptidoglycan envelope in the cyanelles of Glaucocystis nostochinearum Itzigsohn. Arch, Microbiol. 139: 130–138.

    CAS  Google Scholar 

  • Sculthorpe, C. D. 1967. The biology of aquatic vascular plants. Arnold, London.

    Google Scholar 

  • Seckbach, J., J. E Fredrick, and D. J. Garbary. 1983. Auto-or exogenous origin of transitional algae: an appraisal, p. 947–962. In: H. E. A. Schenk and W. Schwerrimler (ed.), Endocytobiology II. De Gruyter, Berlin.

    Google Scholar 

  • Seckbach, J., H. Nagashima, and I. Fukuda. 1990. Autogenous, eukaryogenesis: contradiction or completion of endosymbiotic evolution, p. 575–578. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis., and D. C. Smith (ed.), Endocytobiology IV. 4th Intern. Coll. on Endocytobiology and Symbiosis. INRA, Paris.

    Google Scholar 

  • Sharma, E, B. Bergman, L. Hällbom, and A. v. Hofsten. 1982. Ultrastructural changes of Nostoc of Peltigera canina in presence of SO2. New Phytologist 92:573–579.

    Google Scholar 

  • Shi, D.-J., and D. O. Hall. 1988. The Azolla-Anabaena association: Historical perspective, symbiosis and energy metabolism. Botanica Rev. 54: 354–386.

    Google Scholar 

  • Shi, D.-J., M. Brouers, D. O. Hall, and R. J. Robins, 1987. The effects of immobilization on the biochemical, physiological and morphological features ofAnabaena azollae, 1987. Planta 172: 298–308.

    PubMed  CAS  Google Scholar 

  • Singh, A. and O. N. Srivastava. 1985a. Effect of light intensity on the growth of Azolla pinnata R. Brown at Ran-chi, India. Hydrobiologica 126: 49.

    Google Scholar 

  • Singh, A. and O. N. Srivastava, 1985b. Effect of photoperiod on the growth of Azolla pinnata R. Brown. Hydro-biologica 123: 211.

    Google Scholar 

  • Singh, P. K. 1979. Use of Azolla rice production in India, P. 407. In: Nitrogen and Rice. International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Skuja, H. 1950. Phylogenetische Stellung der Glaucophy- ceen, p. 823. Proc. V II Int. Bot. Congr., Stockholm.

    Google Scholar 

  • Skuja, H. 1954. Glaucophyta, p. 56–57. In: H. Melcher and E. Werdemann (ed.), Syllabus der Pflanzenfamilien, vol. 1. Borntraeger, Berlin.

    Google Scholar 

  • Slocum, R. D., and G. L. Floyd. 1977. Light and electron microscopic investigations in the Dictyonemataceae (basidiolichens). Can. J. Bot. 55: 2565–2573.

    Google Scholar 

  • Smith, D. C., and A. E. Douglas. 1987. The biology of symbiosis. E. Arnold. London.

    Google Scholar 

  • Smith, G. M., 1955. Cryptogamic Botany, vol. 2, 2nd ed. McGraw-Hill; New York.

    Google Scholar 

  • Stanier, R. Y., R. Kunisawa, M. Mandel, and G. CohenBazire, 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bact. Rev. 35: 171–205.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Starnes, S. M., D. H. Lambert, E. S. Maxwell, S. E. Stevens, R. D. Porter, and J. M. Shively. 1985. Cotranscription of the large and small subunit genes of ribulose-1,5bisphosphate carboxylase/oxygenase in Cyanophora paradoxa. FEMS Microbiol. Lett. 28: 165–169.

    Google Scholar 

  • Stevanovic, S., M. G. Bayer, W. Tröger, and H. E. A. Schenk. 1989. Cyanophora paradoxa Korsch.: Ferredoxin partial amino-terminal amino acid sequence, phylogenetic/taxonomic evidence. Endocytobiosis Cell Res. 6: 219–226.

    Google Scholar 

  • Stewart, W. D. P. 1977. A botanical ramble among the blue-green algae. Br. Phycol. J. 12: 89–115.

    Google Scholar 

  • Stewart, W. D. R, R. Rowell, and A. N. Rai, 1983. Cyanobacteria-eukaryotic plant symbioses. Ann. Microbiol. 134B: 205–228.

    Google Scholar 

  • Stirewalt, V. L., and D. A. Bryant. 1989a. Molecular cloning and nucleotide sequence of the petG gene of the cyanelle genome of Cyanophora paradoxa. Nucl. Acids Res. 17: 10095

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stirewalt, V. L., and D. A. Bryant. 1989b. Nucleotide sequence of the psbk gene of the cyanelle genome of Cyanophora paradoxa. Nucl. Acids Res. 17: 10096.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stocker-Wörgötter, E., and R. Türk. 1989. Artificial cultures of the cyanobacterial lichen Peltigera didactyla (Peltigeraceae) in the natural environment. Pl. Syst. Evol. 165: 39–48.

    Google Scholar 

  • Stoddart, J. A. 1989. Foliose Dictyoceratida of the Australian Great Barrier Reef, Australia. III. Preliminary electrophoretic systematics. Mar. Ecol. 10: 167–178.

    Google Scholar 

  • Strasser, R, and G. Falkner, 1986. Characterization of the glutamate/aspartate-transport system in a symbiotic Nostoc sp. Planta 168: 381–385.

    Google Scholar 

  • Svenson, H. K. 1944. The new world species of Azolla. Amer. Fern J. 34: 69–84.

    Google Scholar 

  • Taylor, D. L. 1970. Chloroplasts as symbiotic organelles. Cytology 27: 29–64.

    Google Scholar 

  • Taylor, E J. R. 1974. Implications and extensions of the Serial Endosymbiosis Theory of the origin of eukaryotes. Taxon 23: 229–258.

    Google Scholar 

  • Tell, G. 1979. Chlorophyceae d’eau douce pares et nouvelles de la republique Argentine. Rev. Algol., N.S. 14: 39–48.

    Google Scholar 

  • Tel-Or, E., and T. Sandovsky, 1982. The response of the nitrogen-fixing cyanobacterium Anabaena azollae to combined nitrogen compounds and sugar. Israel. J. Bot. 31: 329–336.

    CAS  Google Scholar 

  • Thwaites, G. H. K. 1849. On the gonidia of lichens. Ann. Mag. nat. Hist., ser. 2, 3: 219–222.

    Google Scholar 

  • Trench, R. K. 1981. Chloroplasts: presumptive and de facto organelles, Ann. N. Y. Acad. Sciences 361: 341–355.

    CAS  Google Scholar 

  • Trench, R. K. 1982. Physiology, biochemistry, and ultra-structure of cyanellae, p. 257–288. In: F. E. Round and D. J. Chapman (ed), Progress in phycological research, vol. 1. Elsevier Biomed. Press. Amsterdam.

    Google Scholar 

  • Trench, R. K., and G. S. Ronzio. 1978. Aspects on the relation between Cyanophora parodoxa (Korschikoff) and its endosymbiotic cyanelles Cyanocyta korschikofj’iana (Hall and Claus). II. The photosynthetic pigments. Proc. Royal Soc. London B202: 445–462.

    CAS  Google Scholar 

  • Tschermak-Woess, E. 1988. The algal partner, p. 39–94. In: M. Galun (ed.), Handbook of lichenology, vol. 1. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Tuan, D. T., and T. Q. Thuyet. 1979. Use of Azolla in rice production in Vietnam, p. 395–405. In: Nitrogen and rice. International Rice Institute, Los Banos, Philippines.

    Google Scholar 

  • Ueda, K. 1961. Structure of plant cells with special reference to lower plants. VI. Structure of chloroplasts in algae. Cytologia. 26: 344–358.

    Google Scholar 

  • Van den Eynde, H., R. De Baere, E. De Roeck, Y. Van de Peer, A. Vandenberghe, R Willekens, and R. de Wachter. 1988. The 5S ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastids and cyanobacteria. J. Mol. Evol. 27: 126–132.

    PubMed  Google Scholar 

  • Verma, R. R, and K. D. N. Singh. 1973. Phytological survey of Sikandarpur Lake at Muzaffarpur Series I. I.dian Sci Cong. Assoc. Proc. 60: 288.

    Google Scholar 

  • Villareal, T. A. 1988. Host-symbiont interactions in the Rhizosolenia-Richelia association. J. Phycol. 24 (2 Suppl.): 10.

    Google Scholar 

  • Villareal, T. A. 1989. Division cycles in the nitrogen-fixing Rhizosolenia (Bacillariophyceae)-Riche/ia (Nostocaceae) symbiosis. Br. Phycol. J. 24: 357–365.

    Google Scholar 

  • Voskoboinikov, G., V. Odintsov, M. Propp, and E. Lobakova. 1990. Structure of symbionts associated with hydrocoral Millepora and nitrogen fixation, p. 297–301. In: R. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis, and D. C. Smith (ed.), Endocytobiology IV. Institut National de la Recherche Agronomique, Paris.

    Google Scholar 

  • Wallace, W. H., and J. E. Gates, 1986. Identification of eu-bacteria isolated from leaf cavities of four species of the N-fixing Azolla fern as Arthrobacter Conn and Dimmick. Appl. Environ. Microbiol. 52: 425–429.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wasmann, C. C., W. Löffelhardt, and H. J. Bohnert. 1987. Cyanelles: Organization and molecular biology, p. 303–324. In: P. Fay and C. Van Baalen (ed.), The cyanobacteria. Elsevier Sci. Publ. (Biomed. Div.) Amsterdam, The Netherlands.

    Google Scholar 

  • Watanabe, I. 1982. Azolla-Anabaena symbiosis-its physiology and use in tropical agriculture, p. 169. In: Y. R. Dommergues and H. G. Diems (ed.), Microbiology of tropical soils and plant productivity. Martinus Nijoff, The Hague, The Netherlands.

    Google Scholar 

  • Watanabe, A., and T. Kiyohara. 1963. Symbiotic blue-green algae of lichens, liverworts and cycads, p. 189–196. In: Japanese Society of Plant Physiologists (ed.), Microalgae and photo-synthetic Bacteria. Special issue of Plant and Cell Physiology. University of Tokyo Press, Tokyo, Japan.

    Google Scholar 

  • Watanabe, I., C. R. Espinas, N. S. Berja, and B. A. Ali-magno, 1977. Utilization of the Azolla-Anabaena complex as a nitrogen fertilizer for rice. IRRI Res. Paper Ser. 11: 15.

    Google Scholar 

  • Waterbury, J. B., and R. Y. Stanier, 1978. Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol. Rev. 42: 2–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weare, N. M., F Azam, T. H. Mague, and O. Holm-Hansen. 1974. Microautoradiographic studies of the marine phycobionts Rhizosolenia and Richelia. J. Phycol. 10: 369–371.

    CAS  Google Scholar 

  • Wettstein, R. von. 1915. Geosiphon Fr. Wettst., eine neue interessante Siphonee. Osten. Bot. Z. 65: 145–156.

    Google Scholar 

  • Wickstrom C. E, and R. W. Castenholz, 1978. Association of Pleurocapsa and Calothrix cyanophyta in a thermal stream. J. Phycol. 14: 84–88.

    Google Scholar 

  • Wilkinson, C. R. 1979. Bdellovibrio-like parasite of cyanobacteria symbiotic in marine sponges. Arch. Microbiol. 123: 101–104.

    Google Scholar 

  • Wilkinson, C. R. 1980. Cyanobacteria symbiotic in marine sponges, p. 553–563. In: W. Schwemmler and H. E. A. Schenk (ed.), Endocytobiology I. Endosymbiosis and Cell Biology. W. de Gruyter, Berlin.

    Google Scholar 

  • Wilkinson, C. R. 1983. Phylogeny of bacterial and cyanobacterial symbionts in marine sponges, p. 993–1002. In: H. E. A. Schenk and W. Schwemmler (ed.), Endocytobiology II. Intracellular space as oligogenetic ecosystem. W. de Gruyter, Berlin.

    Google Scholar 

  • Wilkinson, C. R. 1987. Significance of microbial symbionts in sponge evolution and ecology. Symbiosis 4: 135–146.

    Google Scholar 

  • Wilkinson, C. R., and E. Evans, 1989. Sponge distribution across Davies Reef Great Barrier Reef, Australia, relative to location depth and water movement. Coral Reefs 8: 1–7.

    Google Scholar 

  • Willison, J. H. M., and R. M. Brown, Jr. 1978. A model for the pattern of deposition of microfibrils in the cell wall of Glaucocystis. Planta 141: 51–58.

    Google Scholar 

  • Wirth, V. 1980. Flechtenflora. UTB Ulmer Verl., Stuttgart. Wujek, D. E. 1979. Intracellular bacteria in the blue-green alga Pleurocapsa minor. Trans. Am. Microsc. Soc. 98: 143–145.

    Google Scholar 

  • Zaika, V. E., and I. I. Malinochka, 1986. Symbiosis of cyanobacteria with dinophysiales dinoflagellates. Dokl. Akad. NAUK UKR SSR Ser. B Geol. Khim. Biol. NAUKI, 0 (12): 67–69.

    Google Scholar 

  • Zimmermann, W., T. Lumpkin, and I. Watanabe. 1988. Biochemical taxonomy of Azola-Anabaena, section Azolla, p. 240. In: H. Bothe, F J. de Bruijn, and W. E. Newton (ed.), Nitrogen fixation: Hundred years after. G. Fischer, Stuttgart.

    Google Scholar 

  • Zimmermann, M. R, F C. Thomas, J. E. Thompson, C. Djerassi, H. Streiner, E. Evans, and P. T. Murphy. 1989. The distribution of lipids and sterols in cell types from the marine sponge Pseudaxinyssa sp. Lipids 24: 210–216.

    Google Scholar 

  • Zook, D., H. E. A. Schenk, D. Thiel, K. Poralla, and T. Härtner. 1986. Lipids in Cyanophora paradoxa: II. Arachidonic acid in the lipid fractions of the endocyanelle. Endocytob. Cell Res. 3: 99–103.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schenk, H.E.A. (1992). Cyanobacterial Symbioses. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_50

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics