Advertisement

The Prokaryotes pp 3819-3854 | Cite as

Cyanobacterial Symbioses

  • Hainfried E. A. Schenk

Abstract

The cyanobacteria appear to be an ancient class of organisms, well adapted to most habitats around the earth and often acting as pioneer “plants.” They are a large and morphologically diverse group of prokaryotes, containing both unicellular and filamentous forms (some with specialized cells). However, sequence data of 16S rRNA have shown that the other major eubacterial taxa diverged significantly before the diversification of the modern photoautotrophic cyanobacteria (Giovannoni et al., 1988). The chloroxybacteria (prochlorophyta) are included in this chapter, because, in a dendrogram constructed by cluster analysis of either 5S or 16S RNA sequences, they are situated in a cluster containing all cyanobacteria as well as the Prochloron (Van den Eynde et al., 1988; Giovannoni et al., 1988). Obviously, the prochlorophytes branched off after the divergence of the cyanobacteria.

Keywords

Nitrogen Fixation Usnic Acid Symbiotic Partner Symbiotic Cyanobacterium Azolla Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Agafodorova, M. N., O. A. Gorelova, O. I. Baulina, L. R. Semenova, T. G. Korzhenevskaya, R. G. Butenko, and M. V. Gusev. 1982. Study of initial stages of polyethyleneglycol induced incorporation of cells and spheroplasts of cyanobacteria into isolated tobacco cells and spheroplasts. Biol. Bull. Acad. Sci. USSR (Engl. Translat. IZV Akad. NAUK SSSR Ser. Biol.) 9: 316–323.Google Scholar
  2. Ahmadjian, V. 1961. Studies on lichenized fungi. Bryologist 64: 168–179.Google Scholar
  3. Ahmadjian, V. 1963. The fungi of lichens. Sci. Am. 208: 122–132.PubMedGoogle Scholar
  4. Ahmadjian, V. 1964. Further studies on lichenized fungi. Bryologist 67: 87–98.Google Scholar
  5. Ahmadjian, V. 1965. Lichens. Ann. Rev. Microbiol. 19: 120.Google Scholar
  6. Ahmadjian, V. 1967. A guide to the algae occuring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–160 (and Table II).Google Scholar
  7. Ahmadjian, V. 1973. Methods of isolating and culturing lichen symbionts and thalli, p. 653–659. In: V. Ahmadjian and M. E. Hale (ed.), The lichens. Academic Press, New York.Google Scholar
  8. Ahmadjian, V. 1982a. Algal/Fungal symbioses, p. 179–233. In: F. E. Round and D. J. Chapman (ed.), Progress in phycological research. vol. 1. Elsevier Biomed. Press, Amsterdam, The Netherlands.Google Scholar
  9. Ahmadjian, V. 1982b. The nature of lichens. Nat.Hist. 91 (March): 31–37.Google Scholar
  10. Ahmadjian, V. 1989. Studies on the isolation and synthesis of bionts of the cyanolichen Peltigera canina (Peltigeraceae). Pl. Syst. Evol. 165: 29–38.Google Scholar
  11. Ahmadjian, V., and J. B. Jacobs. 1981. Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289: 169–172.Google Scholar
  12. Ahmadjian, V., and J. B. Jacobs. 1983. Algal-fungal relationships in lichens: recognition, synthesis, and development p. 147–172. In: L. J. Goff (ed.), Algal symbiosis, 1st ed. Cambridge University Press.Google Scholar
  13. Ahmadjian V., and S. Paracer. 1986. Symbiosis, 1st ed, p. 90. University Press New England, Hanover and London.Google Scholar
  14. Ahmadjian, V., L. A. Russell and K. C. Hildreth. 1980. Artificial reestablishment of lichens. I. Morphological interactions between the phycobionts of different lichens and the mycobionts Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72:73–89.Google Scholar
  15. Aitken, A., and R Y. Stanier 1979. Characterization of peptidoglycan from the cyanelles of Cyanophora paradoxa. J. Gen. Microbiology 112: 219–223.Google Scholar
  16. Allen, M. M. 1968. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 4:1–3. Altmann, R. 1890. Die Elementarorganismen und ihre Beziehungen zu den Zellen. Veit Co., Leipzig.Google Scholar
  17. Arad, H., A. Keysari, E. Tel-Or, and D. Kobiler. 1985. A comparison between cell antigens in different isolates of Anabaena azollae. Symbiosis 1: 195–203.Google Scholar
  18. Ashton, P. J., and R. D. Walmsley. 1976. The aquatic fern Azolla and its Anabaena symbiont. Endeavour 19: 3943.Google Scholar
  19. Bai, K.-Z., S.-L. Yu, W.-L. Chen, S.-Y. Yang, and C. Cui. 1979. The isolation and culture of separate colonies of Azolla and Anabaena azollae. Kexue Tongbao 24: 644–666.Google Scholar
  20. Barnet Y. M., M. J. Daft, and W. D. P. Stewart. 1981. Cyanobacteria cyanophage interactions in continuous culture. J. Appl. Bacteriol. 51: 541–552.Google Scholar
  21. Bary, A. de, 1879. Die Erscheinung der Symbiose. Verlag Karl J. Trubner, Strassburg.Google Scholar
  22. Bayer, M. G., T. L. Maier, U. B. Gebhart, and H. E. A. Schenk. 1990. Cyanellar ferredoxin-NADF’ oxidoreductase of Cyanophora paradoxa is encoded by the nuclear genome and synthesized on cytoplasmatic 80S ribosomes. Curr. Genet. 17: 265–267.Google Scholar
  23. Bayer, M. G., and H. E. A. Schenk. 1986. Biosynthesis of proteins in Cyanophora paradoxa: I. Protein import into the endocyanelle analyzed by micro two-dimensional gel electrophoresis. Endocyt. Cell Res. 3: 197–202.Google Scholar
  24. Bayer, M. G. and H. E. A. Schenk. 1989. Ferredoxin of Cyanophora paradoxa Korsh. is encoded on cyanellar DNA. Curr. Genet. 16: 311–313.Google Scholar
  25. Becking, J. H. 1978. Ecology and physiological adaptations of Anabaena in the Azolla-Anabaena symbiosis. Ecol. Bull. (Stockholm) 26: 266.Google Scholar
  26. Becking, J. H. 1979. Environmental requirements of Azolla for use in tropical rice production, p. 345. In: Nitrogen and Rice. International Rice Research Institute, Los Banos, Philippines.Google Scholar
  27. Berthold, R. J., M. A. Borowitzka, and M. A. Mackay. 1982. The ultrastructure of Oscillatoria spongeliae the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia 21: 327–335.Google Scholar
  28. Bhaskaran, S., and G. S. Venkataraman. 1958. Occurrence of a Blue-Green Alga in the Nodules ofr Trifolium alexandrinum. Nature 181: 277–278.Google Scholar
  29. Bohnert, H. J., and W. Löffelhardt, 1984. Genome and gene organization of the cyanelle DNA from Cyanophora paradoxa in relation to the common organization in chloroplasts, p. 58–68. In: W. Wiessner, D. G. Robinson, and R. C. Starr (ed.), Compartments in algal cells and their interaction. Springer-Verlag Berlin.Google Scholar
  30. Boissiere, J.-C.,M.-C. Boissiere, P. Champion-Arnaud, R. Lallement, and J. Wagner, 1987. Le cycle des Nostoc des genres Peltigera et Collema en cultures in vitro et dans le thalle lichenique. Can. J. Bot. 65:1468–1477.Google Scholar
  31. Bonnet, H. T. 1990. Nostoc-Gunnera Association, p. 161172. In: A. N. Rai (ed.), CRC Handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.Google Scholar
  32. Bourrelly, P. 1960. Un nouveau genre africain d’endocyanose: Glaucocystopsis africana nov. gen. et nov. sp. Comptes Rendues de l’Acad. d. Sci. de Paris 251: 416–418.Google Scholar
  33. Boussiba, S., 1988. N2-Fixing cyanobacteria as nitrogen biofertilizer-a study with the isolate Anabaena azollae. Symbiosis 6: 129–138.Google Scholar
  34. Bradley, P. M. 1983. Induced in vitro symbiosis using algae and callus of Daucus carota on medium deficient in nitrogen, p. 613–621. In: H. E. A. Schenk and W. Schwemmler (ed.), Endocytobiology II. de Gruyter, Berlin.Google Scholar
  35. Bradley, P. M., and C. S. Duke. 1987. Cell culture models to study symbiosis. In: J. J. Lee and J. E Fredrick (ed.), Endocytobiology IV. Ann. NYAS 503: 534–537.Google Scholar
  36. Bradley, P. M. 1979. Micromanipulation of cyanelles and a cyanobacterium into higher plant cells. Physiol. Plant. 46: 293–298.Google Scholar
  37. Braun-Howland, E. B., and S. A. Nierzwicki-Bauer. 1990. Azolla-Anabaena Symbiosis: Biochemistry, Ultrastructure, and molecular biology, p. 65–118. In: A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.Google Scholar
  38. Breiteneder, H., C. Seiser, W. Löffelhardt, C. Michalowski, and H. J. Bohnert. 1988. Physical map and protein gene map of cyanelle DNA from the second known isolate of Cyanophora paradoxa (Kies-strain). Curr. Gen. 13: 199–206.Google Scholar
  39. Brown, D. H. (ed.). 1985. Lichen Physiology and Cell Biology. Plenum Press, New York.Google Scholar
  40. Brown, D. H., and R. P. Beckett. 1983. Differential sensitivity of lichens to heavy metals. Ann. Bot. (London) 52: 51–58.Google Scholar
  41. Bryant, D. A., and V. L. Stirewalt, 1990. The cyanelle genome of Cyanophora paradoxa encodes ribosomal proteins not encoded by the chloroplast genomes of higher plants. FEBS Letters 259: 273–280.PubMedGoogle Scholar
  42. Bryant, D. A., R. de Lorimier, D. H. Lambert, J. M. Dubbs, V. L. Stirewalt, S. E. Stevens, R. D. Porter, J. Tam, and E. Jay. 1985. Molecular cloning and nucleotide sequence of the a and ß sub-units of allophycocyanin from the cyanelle genome of Cyanophora paradoxa. Proc. Natl. Acad. Sci. USA 82: 3242–3246.PubMedPubMedCentralGoogle Scholar
  43. Bryant, D. A. 1988. Genetic analysis of phycobilisome biosynthesis, assembly, structure, and function in the cyanobacterium Synechococcus sp. PCC 7002, p. 62–90. In: S. E. Stevens and D. A. Bryant (ed.) Light-energy transduction in photosynthesis: higher plants and bacterial models. Am. Soc. Plant Physiol., Rockville, MD.Google Scholar
  44. Bubrick, P., and M. Galun. 1984. Cyanobiont diversity in the Lichinaceae and Heppiaceae. Lichenologist 16: 279–287.Google Scholar
  45. Büdel, B. 1985. Blue-green phycobionts in the lichen family Lichinaceae. Arch. Hydrobiol. Suppl. 71/Algological Studies 38 /39: 355–357.Google Scholar
  46. Büdel, B., and A. Henssen, 1983. Chroococcidiopsis (Cyanophyceae), a phycobiont in the lichen family Lichinaceae. Phycologia 22: 367–375.Google Scholar
  47. Büdel, B., and A. Henssen. 1988. Trebouxia-aggregata and Gloeocapsa-Sanguinea phycobionts in Euosis granatina Lichinaceae. Plant. Syst. Evol. 158: 235–242.Google Scholar
  48. Burgoon, A. C., and P. J. Bottino. 1976. Uptake of the nitrogen-fixing blue-green algae Gloeocapsa into protoplasts of tobacco and maize. J. Hered. 67: 223–226.Google Scholar
  49. Burnap, R. L., and R. K. Trench. 1989a. The biogenesis of the cyanellae of Cyanophora paradoxa. I. Polypeptide composition of the cyanellae. Proc. R. Soc. Lond. B 238: 53–72.Google Scholar
  50. Burnap, R. L., and R. K. Trench. 1989b. The biogenesis of the cyanellae of Cyanophora paradoxa. II. Pulse-la-belling of cyanellar polypeptides in the presence of transcriptional and translational inhibitors. Proc. R. Soc. Lond. B 238: 73–87.PubMedGoogle Scholar
  51. Burnap, R. L., and R. K. Trench. 1989c. The biogenesis of the cyanellae of Cyanophora paradoxa. III. In vitro synthesis of cyanellar polypeptides using separated cytoplasmic and cyanellar RNA. Proc. R. Soc. Lond. B 238: 89–102.Google Scholar
  52. Calvert, H. E., and G. A. Peters. 1981. The Azolla-Anabaena azollae relationship. IX. Morphological analysis of leaf cavity hair populations. New Phytol. 89: 327–335.Google Scholar
  53. Candales, R., A. D. Antoine, and A. C. Vasconcelos. 1988. Isolation and characterization of the nitrogen-fixing cyanobacteria from different Azolla species, p. 232. In: H. Bothe, E J. de Bruijn, and W. E. Newton (ed.), Nitrogen fixation: Hundred years after. G. Fischer, Stuttgart.Google Scholar
  54. Cantrell, A., and D. A. Bryant. 1987. Nucleotide sequence of the genes encoding cytochrome b-559 from the cyanelle genome of Cyanophora paradoxa. Photosynth. Res. 16: 65–81.Google Scholar
  55. Cavalier-Smith, T., and J. J. Lee. 1985. Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J. Protozool. 32: 376–379.Google Scholar
  56. Champion-Arnaud, P., and R. Lallemant. 1986. Localisation of ammonia assimilation enzyme activities in the course of the cycle of Nostoc filaments isolated from the lichens Peltigera canina (L.) Willd. and Peltigera praetextata (Flörke et Sommerf.) Zopf. Lichen Physiol. Biochem. 1: 104–1 16.Google Scholar
  57. Chapman, D. J. 1966. The pigments of the symbiotic algae (cyanomes) of Cyanophora paradoxa and Glaucocystis nostochinearum and two rhodophyceae, Porphyridium aerugineum and Asterocytis ramosa. Arch. Mikrobiol. 55: 17–25.Google Scholar
  58. Cheong, H. S., C. M. Kim, and Y. H. Kang. 1986. Induction of symbiosis between Nostoc muscorum and cultured plant cells. I. Effects of polyamines on the association of Nostoc muscorum with tobacco and soybean cultured cells. Korean J. Bot. 29: 67–75.Google Scholar
  59. Cheong, H. S., B. Hwang, and Y. H. Kang. 1987. Induction of symbiosis between Nostoc muscorum and cultured plant cells. II. Changes of nitrogen fixation ability and morphology by association of Nostoc muscorum with cultured tobacco cells. Korean J. Bot. 30: 257–266.Google Scholar
  60. Chodat, R. 1919. Sur un Glaucocystis et sa position sys- tematique. Bull. Soc. Bot. Geneve 2 (11): 42–49.Google Scholar
  61. Cohn, E 1972. Ueber parasitische Algen. Beitr. Biol. Pflanz. 1: 87–108.Google Scholar
  62. Cohn, J., and R. N. Renlund. 1953. Notes on Azolla caroliniana. Am. Fern J. 43: 7.Google Scholar
  63. Colwell, G. L., and C. E. Wickstrom. 1976. Cell, cyanelle, and chlorophyll a relationships in Glaucocystis nostochinearum Itz. J. Phycol. 12 (Suppl.): 11.Google Scholar
  64. Cowen, R. 1988. The role of algal symbiosis in reefs through time. Palaios 3: 221–227.Google Scholar
  65. Cox, G. C., R. G. Hiller, and A. W. D. Larkum. 1985. An unusual cyanophyte containing phycobilin and symbiotic with ascidians and sponges. Mar. Biol. (Berlin) 89: 149–164.Google Scholar
  66. Coxson, D. S., G. P. Harris, and K. A. Kershaw. 1982. Physiological-environmental interactions. XV. Contrasting gas exchange patterns between a lichenized and nonlichenized terrestrial Nostoc cyanophyte. New Phytologist 92: 161–172.Google Scholar
  67. Culberson, C. E, and V. Ahmadjian. 1980. Artificial reestablishment of lichens. II. Secondary products of resynthesized Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72: 90–109.Google Scholar
  68. Culberson, C. E, W. L. Culberson, and C. F. Johnson. 1977. Second Supplement to Chemical and Botanical Guide to Lichen Products. 400 pp. The American Bryological and Lichenological Society, St. Louis.Google Scholar
  69. Da Silva, E. J., L. E. Henricksson, and E. Henricksson. 1973. Effects of pesticides on asymbiotic and symbiotic nitrogen fixing blue-green algae 35pp. UNESCO and WHO. Global impacts of applied microbiology. 4th Int. Conf., Sao Paulo, Brazil.Google Scholar
  70. Degelius, G. 1954. The lichen genus Collema in Europe. Symb. bot. upsal. 13:1–499, Plate I-XXVII.Google Scholar
  71. Dodds, W. K. 1989. Photosynthesis of two morphologies of Nostoc-Parmeloides cyanobacteria as related to current velocities and diffusion patterna. J. Phycol. 25: 258–262.Google Scholar
  72. Drum, R. W. and S. Pankratz. 1965. Fine structure of an unusual cytoplasmic inclusion in the diatom genus, Rhopalodia. Protoplasma 60: 141–149.Google Scholar
  73. Duclaux, G., E Lafargue, and M. Wahl. 1988. First report of Prochloron in association with the genus Polysyncraton didemnid ascidian (Tunicata). Vieu Milieu 38: 145–148.Google Scholar
  74. Duebbeler, P. 1980. Phycorella scytonematis new-genus new-species Dothideales a new symbiont with Scytonema. Sydowia Ann. Mycol. 33: 33–38.Google Scholar
  75. Drew, E. A., and D. C. Smith. 1967. Studies in the physiology of lichens. VII. The physiology of the Nostoc symbionts of Peltigera polydactyla compared with cultured and free-living forms. New Phytologist 66: 379–388.Google Scholar
  76. Echlin, P. 1966. The fine structure of Glancocystis nostochinearum in relation to the cyanophytic origin of chloroplaste, p. 285–286. In: R. Uyeda (ed.), Proceedings of the 6th International Conference on Electron Microscopy, vol. 2. Maruzen Co., Tokyo, Japan.Google Scholar
  77. Echlin, P. 1970. The photosynthetic apparatus in prokaryotes and eukaryotes, p. 231–248. In: H. P. Charles and B. C. J. G. Knight (ed.), 20th Symp. Soc. Gen. Microbiology. University Press, Cambridge.Google Scholar
  78. Enderlin, C. S., and J. C. Meeks. 1983. Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 153: 157–165.Google Scholar
  79. Eriksson, O. E., and D. C. Hawksworth. 1988. Outline of the ascomycetes. Systema Ascomycetum 7: 119–191.Google Scholar
  80. Evrard, J.-L., C. Johnson, I. Janssen, W. Löffelhardt, J.-H. Weil and M Kuntz. 1990a. The cyanelle genorne of Cyanophora paradoxa, unlike chloroplast genome, codes for the ribosomal L3 protein. Nucleic Acids Res. 18: 1115–1119.PubMedPubMedCentralGoogle Scholar
  81. Evrard, J.-L., M. Kuntz, and J. H. Weil. 1990b. The nucleotide sequence of five ribosomal protein genes fromGoogle Scholar
  82. the cyanelles of Cyanophora paradoxa: Implications concerning the phylogenetic relationship between cyanelles and chloroplasts. J. Mol. Evol. 30:16–25.Google Scholar
  83. Fenwick, M. G. 1966. Some rare and interesting algae from Port Radium, N. W. T. Canada. Trans. Amer. Microsc. Soc. 85: 477–480.Google Scholar
  84. Filin, N. I., and V. R. Filin. 1989. The cyanellae in the capsule of Andreaea rupestris Hedw. Byull. Mosk. OVA ISPYT PRIR OTD Biol. 94: 93–101.Google Scholar
  85. Floener, L., and H. Bothe. 1980. Nitrogen fixation in Rhopalodia gibba a diatom containing blue-greenish inclusions symbiotically, p. 541–552. In: W. Schwemmler and H. E. A. Schenk (ed.), Endocytobiology I: Endo-symbiosis and Cell Biology. W. De Gruyter, Berlin.Google Scholar
  86. Floener, L., G. Danneberg, and H. Bothe. 1982. Metabolic activities in Cyanophora paradoxa and its cyanelles. I. The enzymes of assimilatory nitrate reduction. Planta 156: 70–77.PubMedGoogle Scholar
  87. Fogg, G. E. 1982. Marine plankton, p. 491–513. In: N. G. Carr and B. A. Whitton (ed.), The Biology of cyanobacteria. Blackwell, Oxford.Google Scholar
  88. Foissner, W. 1980. Malacophrys viridis, new-species, Malacophryidae, new family, a ciliate protozoa ciliophora with features of the Kinetophragminophora and Oligohymenophora. Zool. Scr. 9: 81–88.Google Scholar
  89. Fowler, K. 1975. Megaspores and massulae of Azolla prisca from the oligocene of the Isle of Wight. Paleontology 18: 483.Google Scholar
  90. Franche, C., and G. Cohen-Bazire. 1987. Evolutionary divergence in the nifH.D.K. gene region among nine symbiotic Anabaena azollae and between Anabaena azollae and some free-living heterocystous cyanobacteria. Symbiosis 3: 159–178.Google Scholar
  91. Fritsch, E E. 1952. The structure and reproduction of the algae, vol. 2, p. 768–898. University Press, Cambridge.Google Scholar
  92. Fukuda, I. 1981. A possible literature survey on a thermal alga Cyanidium caldarium Geitler. (III), p. 11–15. Science University of Tokyo, Japan.Google Scholar
  93. Gaines, G. and M. Elbrächter. 1987. Dinoflagellates as symbiont hosts, p. 250–251. In: E. J. R. Taylor (ed.), The biology of dinoflagellates. Blackwell Scientific, Oxford, UK.Google Scholar
  94. Gallucci, K. K., and H. W. Paerl. 1983. Pseudomonas aeruginosa chemotaxis associated with blooms of nitrogen fixing blue-green algae cyanobacteria.Google Scholar
  95. Galun, M. (ed.) 1988. Handbook of lichenology. CRC Press, Inc., Boca Raton, Fl.Google Scholar
  96. Galun, M. 1990. Lichen research: an overview with some emphases (review article), p. 161–168. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis, and D. C. Smith (ed.), Endocytobiology IV. INRA, Paris.Google Scholar
  97. Galun, M., and Bubrick, P. 1984. Physiological interactions between the partners of the lichen symbiosis, p. 362401. In: H. E. Linskens and J. Heslop-Harrison (ed.), Cellular interactions, encyclopedia of plant physiology, vol. 17. Springer-Verlag, Berlin.Google Scholar
  98. Gates, J. E., R. W. Fisher, and R. A. Candler. 1980. The occurence of coryneform bacteria in the leaf cavity of Azolla Arch. Microbiol. 127: 163.Google Scholar
  99. Gates, J. E., R. W. Fisher, T. W. Goggin, and N. I. Azrolan, 1981. Antigenic differences between Anabaena azollae fresh from the Azolla fern leaf cavity and free-living cyanobacteria. Arch. Microbiol. 128: 126–129.Google Scholar
  100. Geitler, L. 1923. Der Zellbau von Glaucocystis nostochinearum und Gloeochaete wittrockiana und die Chromatophoren-Symbiose-theorie von Mereschkowsky. Arch. Protistenk. 47: 1–24.Google Scholar
  101. Geitler, L. 1936. Schizophyzeen. In: G. Tischler and A. Pascher, (ed.), Handbuch der Pflanzenanatomie, vol. 7, IB: 106–117. Borntraeger, Berlin.Google Scholar
  102. Geitler, L. 1953. Allogamie und Autogamie bei der Diatomee Denticulata tenuis und die Geschlechtsbestimmung der Diatomeen. ()sterr. Bot. Z. 100: 331–352.Google Scholar
  103. Geitler, L. 1959. Syncyanosen, p. 530–545. In: E. Ruhland, (ed.), Handbuch der Pflanzenphysiologie, vol. II. Springer-Verlag, Berlin.Google Scholar
  104. Geitler, L. 1977. Zur Entwicklungsgeschichte der Epithemiaceen Epithemia, Rhopalodia und Denticula (Diatomophyceae) und ihre vermutlich symbiotischen Sphäroidkörper. Plant Syst. Evol. 128: 259–275.Google Scholar
  105. Giddings, T. H., C. Wasmann, and L. A. Staehelin. 1983. Structure of the thylakoids and envelope membranes of the cyanelles of Cyanophora paradoxa. Plant Physiol. 71: 409–419.PubMedPubMedCentralGoogle Scholar
  106. Giovannoni, S. J., S. Turner, G. J. Olsen, S. Barns, D. J. Lane, and N. R. Pace, 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170: 3584–3592.PubMedPubMedCentralGoogle Scholar
  107. Gorham, P. R., J. M. McLachlan, U. T. Hammer, and W. K. Kim. 1964. Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Breb. Verh. Int. Verein. theor. angew. Limnol. 15: 796–804.Google Scholar
  108. Granhall, U., and A. V. Hofsten. 1976. Nitrogenase activity in relation to intracellular organisms in Sphagnum mosses. Physiologia Plantarum 36: 88–94.Google Scholar
  109. Green, T. G. A., and D. C. Smith. 1974. Lichen physiology, part 14. Differences between lichen algae in symbiosis and in isolation. New Phytol. 73: 753–766.Google Scholar
  110. Griffiths, B. M. 1915. On Glaucocystis nostochinearum Itzigsohn. Ann. Bot. 29: 423–432.Google Scholar
  111. Griffiths, D. J., and Luong-Van Thinh. 1987. Photosynthesis by in situ and isolated Prochloron (Prochlorophyta) associated with didemnid ascidians. Symbiosis 3: 109–122.Google Scholar
  112. Grilli Caiola, M., C. Forni, and M. Castagnola. 1988. Bacteria in the Azolla-Anabaena association. Symbiosis 5: 185–198.Google Scholar
  113. Gusev, M. V., and T. G. Korzhenevskaya, 1990. Artificial Associations, p. 173–230. In: A. N. Rai (ed.) CRC Handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.Google Scholar
  114. Gusev, M. V., R. G. Butenko, and T. G. Korzhenevskaya. 1984. Cyanobacteria in association with cultivated cells of higher plants, p. 1–40. In: V. P. Skulachev (ed.), Sov. Scient. Rev./Sect. D. Physicochem. Biol. Rev., vol. 4. Harwood Acad. Publ., New York.Google Scholar
  115. Gusev, M. V., T. G. Korzhenevskaya, L. V. Pyvovarova, OA. Baulina, and R. G. Butenko. 1986. Introduction of a nitrogen-fixing cyanobacterium into tobacco shoot regenerates. Planta 167: 1–8.PubMedGoogle Scholar
  116. Hale, M. E., and W. L. Culberson. 1966. A third checklist of the lichens of the continental United States and Canada. Synonyms and excluded names. The Bryologist 69: 141–182.Google Scholar
  117. Hale, M. E., 1983. The biology of lichens (3rd Edition). 190 pp. E. Arnold, London.Google Scholar
  118. Hall, W. T., and G. Claus, 1963. Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa Korschikoff. J. Cell Biol. 19: 551–563.PubMedPubMedCentralGoogle Scholar
  119. Hall, W. T., and G. Claus, 1967. Ultrastructural studies on the cyanelles of Glaucocystis nostochinearum Itzigsohn. J. Phycol. 3: 37–51.Google Scholar
  120. Hallbom, L., and B. Bergman. 1979. Influence of certain herbicides and a forest fertilizer on the nitrogen fixation by the lichen Peltigera praetextata. Oecologia (Berlin) 40: 19–28.Google Scholar
  121. Hawksworth, D. L. 1988a. The fungal partner, p. 35–38. In: M. Galun (ed.), Handbook of Lichenology, vol. 1. CRC Press, Boca Raton, FL.Google Scholar
  122. Hawksworth, D. L. 1988b. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96: 3–20.Google Scholar
  123. Hawksworth, D. L., and D. J. Hill. 1984. The lichen-form- ing fungi, 1st ed. Blackie, Glasgow and London.Google Scholar
  124. Hawksworth, D. L., and E Rose, 1976. Lichen as pollution monitors. Studies in Biology, no. 66. E. Arnold, London.Google Scholar
  125. Heimann, K., Reize, I. B., and M. Melkonian. 1989. The flagellar developmental cycle in algae: flagellar transformation in Cyanophora paradoxa (Glaucocystophyceae). Protoplasma 148: 106–110.Google Scholar
  126. Heinhorst, S., and J. M. Shively. 1983. Encoding of both subunits of ribulose-1, 5-bisphosphate carboxylase by organelle genome of Cyanophora paradoxa. Nature 304: 373–374.Google Scholar
  127. Heinz, G. 1973. Versuche zur Isolierung der lysozymempfindlichen Stützmembran von Cyanocyta korschikoffiana, der Endocyanelle aus Cyanophora paradoxa KORSCH. Dipl.Arb., University of Tübingen.Google Scholar
  128. Henriksson, E. 1951. Nitrogen fixation by a bacteria-free, symbiotic Nostoc strain isolated from Collema. Physiol. Plantarum 4: 542–545.Google Scholar
  129. Henssen, A., and H. M. Jahns. 1974. Lichenes. Thieme, Stuttgart.Google Scholar
  130. Herdman, M., and R. Y. Stanier. 1977. The cyanelle: chlo- roplast or endosymbiotic prokaryote? FEMS 1: 7–12.Google Scholar
  131. Hill, D. J. 1975. The pattern of development of Anabaena in the Azolla-Anabaena symbiosis. New Phytol. 78: 611–616.Google Scholar
  132. Hill, D. J. 1977. The role of Anabaena in the Azolla-Anabaena symbiosis. Planta 122: 179–184.Google Scholar
  133. Hill, D. J. 1989. The control of the cell cycle in microbial symbionts. New Phytol. 112: 175–184.Google Scholar
  134. Hills, L. V., and B. Gopal. 1967. Azolla primaeva and its phylogenetic significance. Can. J. Bot. 45: 1179–1191.Google Scholar
  135. Holst„ R. W. and J. H. Yopp. 1979. Studies of the Azolla and Anabaena symbiosis using Azolla mexicana. I. Growth in nature and laboratory. Am. Fern J. 69: 17–25.Google Scholar
  136. Honegger, R. 1980. Zytologie der Blaualgen-HornmoosSymbiose bei Anthoceros laevis aus Island. Flora 170: 290–302.Google Scholar
  137. Honegger, R. 1984. Cytological aspects of the mycobiontphycobiont relation in lichens. Haustorial types phycobiont cell wall types and ultrastructure of the cell surface layers in some cultured and symbiotic mycobionts and phycobionts. Lichenologist (Oxf) 16: 1 1127.Google Scholar
  138. Honegger, R., and V. Kutasi. 1990. Anthraquinone production in three aposymbiotically cultured teloschistalean lichen mycobionts: the role of the carbon source, p. 161–168. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis, and D. C. Smith (ed.), Endocytobiology IV. Institut National de la Recherche Agronomique, Paris.Google Scholar
  139. Hutstedt, F. 1930. Die Kieselalgen Deutschlands, Osterreichs und der Schweiz. Rabenhorsts KryptogamenFlora 7 ( 1 ). Akad. Verl. GmbH, Leipzig.Google Scholar
  140. Jacob, F. 1961. Zur Biologie von Codium bursa (L.) Agardh und seiner endophytischen Cyanophyceen. Arch. Protistenk. 105: 345–406.Google Scholar
  141. Jehn, U., and K. Zetsche. 1988. In vitro synthesis of the cyanelle proteins of Cyanophora paradoxa by isolated cyanelles and cyanelle RNA. Planta 173: 58–60.PubMedGoogle Scholar
  142. Jennings, J. B., and S. R. Gelder, 1976. Observations on the feeding mechanism diet and digestive physiology of Histriobdella homari an aberrant polychaete symbiotic with north american and european lobsters. Biol. Bull. (Woods Hole) 151: 489–517.Google Scholar
  143. Jensen, T. E., and C. C. Bowen. 1970. Cytology of blue-green algae. Part 2: Unusual inclusions in the cytoplasm. Cytologia (Tokyo) 35: 132–152.Google Scholar
  144. Kaplan, D., and G. A. Peters. 1988. Interaction of carbon metabolism in the Azolla-Anabaena symbiosis. Symbiosis 6: 53–68.Google Scholar
  145. Kardish, N., M. Kessel, and M. Galun. 1989. Characterization of symbiotic and cultured Nostoc of the lichen Nephroma laevigatum Ach. Symbiosis 7: 257–266.Google Scholar
  146. Jordan, W. R, and E R. Rickson. 1971. Cyanophyte cephalodia in the lichen genus Nephroma. Amer. J. Botany 58: 562–568.Google Scholar
  147. Kawaguti, S. 1971. Blue-green algae in echiuroid worms, p. 265–273. In: T. C. Chang (ed.), Aspects of the biology of symbiosis. Butterworth, London.Google Scholar
  148. Kershaw, K. A. 1985. Physiological ecology of lichens, p. 293, Cambridge Univ. Press. Cambridge.Google Scholar
  149. Kies, L. 1967. Über Zellteilung und Zygotenbildung bei Roya obtusa (Breb.) West et West. Mitt. Staatsinst. Allg. Botanik Hamburg: 35–42.Google Scholar
  150. Kies, L. 1974. Elektronenmikroskopische Untersuchungen an Paulinella chromatophora Lauterborn, einer Thekamöbe mit blaugrünen Endosymbionten (Cyanellen). Protoplasma 80: 69–89.PubMedGoogle Scholar
  151. Kies, L. 1976. Untersuchungen zur Feinstruktur und taxonomischen Einordnung von Gloeochaete wittrockiana, einer apoplastidalen capsalen Alge mit blaugrünen Endosymbionten (Cyanellen). Protoplasma 87: 419–446.Google Scholar
  152. Kies, L. 1979. Zur systematischen Einordnung von Cyanophora paradoxa, Gloeochaete wittrockiana und Glaucocystis nostochinearum. Ber. Deutsch. Bot. Ges. 92: 445–454.Google Scholar
  153. Kies, L. 1980. Morphology and systematic position of some endocyanomes, p. 7–19. In: W. Schwemmler and H. E. A. Schenk (ed.), Endocytobiology. I. Endosymbiosis and cell biology. W. de Gruyter, Berlin, Germany.Google Scholar
  154. Kies, L. 1984a. Einzeller mit blaugrünen Endosymbionten (Cyanellen) als Objekte der Symbioseforschung und Modell-organismen für die Evolution der Chloroplasten. Biol. Rdsch. 22: 145–157.Google Scholar
  155. Kies, L. 1984b. Cytological aspects of blue-green algal endosymbiosis, p. 191–199. In: W. Wiessner, D. Robinson, and R. C. Starr (ed.), Compartments in algal cells and their interaction. Springer-Verlag Berlin.Google Scholar
  156. Kies, L. 1989. Ultrastructure of Cyanoptyche gloeocystis f. dispersa (Glaucocystophyceae) and their cyanelles. Pl. Syst. Evol. 164: 65–73.Google Scholar
  157. Kies, L., and B. P. Kremer. 1979. Function of Cyanelles in the Thecamoeba Paulinella chromatophora. Naturwissenschaften 66: 578.Google Scholar
  158. Kies, L., and B. P. Kremer. 1986a. Cyanellen-Endocytobionten oder Zellorganellen? BIUZ 16: 106–112.Google Scholar
  159. Kies, L., and B. P. Kremer. 1986b. Typification of the Glaucocystophyta. Taxon 35: 128–133.Google Scholar
  160. Kies, L., and B. P. Kremer. 1989. Phylum Glaucocystophyta, p. 152–166. In: L. Margulis, D. J. Chapman, and J. Corliss (ed.), Handbook of protoctists. Jones and Bartlett, Boston, MA.Google Scholar
  161. Kimor, B., E M. H. Reid, and J. B. Jordan. 1978. An unusual occurence of Hemiaulus membranaceus Cleve (Bacillariophyceae) with Richelia intracellularis Schmidt (Cyanophyceae) off the coast of Southern California in October 1976. Phycologia 17: 162–166.Google Scholar
  162. Klaveness, D. 1984. Studies on the morphology, food selection and growth of 2 planktonic freshwater strains of Coleps sp. Protistologia 20: 335–350.Google Scholar
  163. Kleinhaus, S., and A. D. Kaiser. 1988. Ecology and bio-mechanical consequences of living together induced morphological change in a Nostoc and Cricotopus symbiosis. Am. Zool. 28: 34A.Google Scholar
  164. Kleining, H., P. Beyer, C. Schubert, B. Liedvogel, and E Lutke-Brinkhaus. 1986. Cyanophora paradoxa: fatty acids and fatty acid synthesis in vitro. Z. Naturforsch. 41c: 169–171.Google Scholar
  165. Knapp, E., 1933. Über Geosiphon pyriforme Fr. Wettst., eine intrazelluläre Pilz-Algen-Symbiose. Ber. Bot. Ges. 51: 210–216.Google Scholar
  166. Ko, K., J. M. Jaynes, and N. A. Straus. 1985. Homology between the cyanelle DNA of Cyanophora paradoxa and the chloroplast DNA of Vicia faba. Plant Science 42: 115–123.Google Scholar
  167. Kohlmeyer, J. 1974. Higher fungi as parasites and symbionts of algae. Veröff. Inst. Meeresforsch. Bremerh. Suppl. 5: 339–356.Google Scholar
  168. Kohlmeyer, J., and E. Kohlmeyer. 1979. Submarine lichens and lichenlike associations, p. 70–78. In: Marine mycology: The higher fungi, Academic Press, New York.Google Scholar
  169. Kohlmeyer, J., and B. Volkmann-Kohlmeyer. 1988. Halographis (Opegraphales), a new endolithic lichenoid from corals and snails. Can.J.Bot. 66: 1138–1141.Google Scholar
  170. Konar, R. N., and R. J. Kapoor. 1972. Anatomical studies on Azolla pinnata. Phytomorphology 22: 211–223.Google Scholar
  171. Koray, T. 1988. Symbiotic associations in microplankton of Izmir Bay, Aegean Sea, and their pollution dependent distributions. Doga Biyol. Sensi 12: 46–52.Google Scholar
  172. Korinek, J. 1928. Über die Bakteriensymbiose der Oscillatorien. Arch. Protistenk. 51: 98–108.Google Scholar
  173. Kratz, W. A. and J. Myers. 1955. Nutrition and growth of several blue-green algae. Am. J. Bot. 42: 282–287.Google Scholar
  174. Kremer, B. P. 1983. Cyanidium caldarium: Rhodophyte, cyanome, or transitional species? p. 963–970. In: H. E. A. Schenk and W. Schemmler (ed.), Endocytobiology. I I. W. de Gruyter, Berlin, Germany.Google Scholar
  175. Kremer, B. R, G. B. Feige, and H. A. W. Schneider. 1978. A new proposal for the systematic position of Cyanidium caldarium. Naturwissench. 65: 157–158.Google Scholar
  176. Kremer, B. P., L. Kies, and A. Rostami-Rabet. 1979. Photosynthetic performance of cyanelles in the endocyanomes Cyanophora, Glaucosphaera, Gloeochaete, and Glaucocystis. Z. Pflanzenphys. 92: 303–317.Google Scholar
  177. Kulasooriya, S. A., H. Arad, O. Canaani, E. Tel-Or, and S. Malkin, 1988. Distribution of the N2fixation and photosynthetic activities in the Azolla-Anabaena symbiosis. Symbiosis 6: 177–128.Google Scholar
  178. Ladha, J. K., and I. Watanabe. 1982. Antigenic similarity among Anabaena azollae separated from different species of Azolla. Biochem. Biophys. Res. Commun. 109: 675–682.PubMedGoogle Scholar
  179. Ladha, J. K., and I. Watanabe. 1984. Antigenic analysis of Anabaena azollae and the role of lectin in the AzollaAnabaena symbiosis. New Phytol. 98: 295–300.Google Scholar
  180. Lafargue, E, and G. Duclaux. 1979. First examples in the Caribbean Sea of a symbiotic association between a didemnid ascidian species and a unicellular alga. Cyanophyta, Chroococcales, Trididemnum cyanophorum, new species, and Synechocystis trididemni. Ann. Inst. Oceanogr. 55: 163–184.Google Scholar
  181. Lallemant, R. 1985. Le developpement en cultures pures in vitro des mycosymbiotes des lichens. Canad.J.Bot. 63: 681–703.Google Scholar
  182. Lallemant, R., J.-C. Boissiere, M.-C. Boissiere, J.-C. Leclerc, P. Velly, and J. Wagner. 1986. La symbiose lichenique: approches nouvelles. Bull. Soc. Bot. Fr. 133, Actual. Bot. 1986 (2): 41–79.Google Scholar
  183. Lallemant, R., and D. Savoye. 1985. Lectins and morpho-genesis: Facts and outlooks, p. 335–350. In: D. H. Brown (ed.) Lichen physiology and cell biology. Plenum Publ. Corp., New York.Google Scholar
  184. Lambert, D. H., D. A. Bryant, V. Stirewalt, J. M. Dubbs, S. E. Stevens, and R. D. Porter. 1985. Gene map for the Cyanophora paradoxa cyanelle genome. J. Bacteriol. 164: 659–664.PubMedPubMedCentralGoogle Scholar
  185. Larkum, A. W. D., G. C. Cox, R. G. Hiller, D. L. Parry, and T. R Dibbayawan. 1987. Filamentous cyanophytes containing phycourobilin and symbiosis with sponges and an ascidia of coral reefs. Mar. Biol. (Berlin) 95: 1–14.Google Scholar
  186. Lauterborn, R. 1895. Protozoenstudien: II. Paulinella chromatophora nov.gen., nov.spec., ein beschalter Rhizopode des Süsswassers mit blaugrünen chromatophorenartigen Einschlüssen. Z. Wiss. Zool. 59: 537–544.Google Scholar
  187. Lawrey, J. D. 1984. Biology of lichenized fungi. 408 pp. Praeger, New York.Google Scholar
  188. Lefort, M. 1965. Sur le chromatoplasma d’une cyanophycee endosymbiotique: Glaucocystis nostochinearum Itzigs. C. R. Hebd. Seances Acad. Sci. D 261: 233–236.Google Scholar
  189. Lefort-Tran, M. 1981. Le triple layered organization of the Euglena chloroplast envelope (signification and functions). Ber. Deutsch. Bot. Ges. 94: 463–476.Google Scholar
  190. Lemaux, P. G., and A. Grossmann. 1984. Isolation and characterization of a gene for a major light-harvesting polypeptide from Cyanophora paradoxa. Proc. Nat. Ac. Sci. USA 80: 4100–4104.Google Scholar
  191. Lewin, R. A. 1984. Prochloron a status report. Phycologia 23: 203–208.Google Scholar
  192. Lewin, R. A. 1986. The phylogeny of Prochloron. G. Bot. Ital. 120: 1–14.Google Scholar
  193. Lin, Y.-X. 1980. Classification of Azolla and wide use of certain species. Acta Phytotaxon. Sin. 18: 450–456.Google Scholar
  194. Lin, C., and I. Watanabe. 1988. A new method for obtaining Anabaena-free Azolla. New Phytol. 108: 341–344.Google Scholar
  195. Lin, C., I. Watanabe, C. C. Liu, D. Y. Zheng, and L. E Tang. 1988. Re-establishment of symbiosis to Anabaena-free Azolla, p. 223–227. In: H. Bothe, F. J. de Bruijn, and W. E. Newton (ed.), Nitrogen fixation: Hundred years after. G. Fischer, Stuttgart.Google Scholar
  196. Lindblad, P., and B. Bergman. 1990. The Cycad-Cyanobacterial Symbiosis, p. 137–160. In: A. N. Rai (ed.), CRCGoogle Scholar
  197. Handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL. Liu, C. C. 1979. Use of Azolla in rice production in China, p. 375. In: Nitrogen and rice. International Rice Research Institute, Los Banos, Philippines.Google Scholar
  198. Liu, C. C., W.-C. Wei, and D. Y. Zheng. 1984. Some advances in Azolla research, p. 57. In: C. Veeder and W. E. Newton (ed.), Advances in nitrogen fixation research. Martinus Nijhoff, The Hague, The Netherlands.Google Scholar
  199. Löffelhardt, W., H. Mucke, and H. J. Bohnert. 1980. Cyanelle DNA from Cyanophora paradoxa: Analogies to chloroplast DNA, p. 523–530. In: W. Schwemmler and H. E. A. Schenk (ed.), Endocytobiology I. Endosymbiosis and cell biology. de Gruyter, Berlin.Google Scholar
  200. Löffelhardt, W., H. Mucke, E. J. Crouse, and H. J. Bohnert. 1983. Comparison of the cyanelle DNA from two different strains of Cyanophora paradoxa. Curr. Gen. 7: 139–144.Google Scholar
  201. Lowe, R. L., B. H. Rosen, and G. W. Fairchild. 1984. Endosymbiotic blue-green algae in fresh water diatoms: An advantage in nitrogen poor habitats. J. Phycol. 20 (Suppl.): 24.Google Scholar
  202. Lumpkin, T. A., and D. L. Plucknett. 1980. Azolla: Botany, physiology, and use as a green manure. Economic Botany 34: 111–153.Google Scholar
  203. Lumpkin, T. A., and D. L. Plucknett. 1982. Azolla as a green manure: Use and management in crop production. Westview Press, Boulder, CO.Google Scholar
  204. Mague, T. H., N. M. Weare, and O. Holm-Hansen, 1974. Nitrogen fixation in the North Pacific Ocean. Marine Biol. 24: 109–119.Google Scholar
  205. Maid, U., K. Valentin, and K Zetsche. 1990. The psbA-gene from a red alga resembles those from cyanobacteria and cyanelles. Curr. Gen. 17: 255–259.Google Scholar
  206. Mangeney, E., and S. P. Gibbs. 1987. Immunocytochemical localization of ribulose-1,5-bisphosphate carboxylase/ oxygenase in the cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. Europ. J. Cell Biol. 43: 65–70.Google Scholar
  207. Margulis, L. 1970. Origin of eukaryotic cells. 349 pp. Yale University Press, New Haven.Google Scholar
  208. Margulis, L. 1981. Symbiosis in cell evolution. 419 pp. Freeman and Co., San Francisco, CA.Google Scholar
  209. Marten, S., and P. Brandt, 1984. The organelle versus endosymbiont problem of Cyanophora paradoxa, p. 6975. In: W. Wiessner, D. G. Robinson, and R. C. Starr (ed.), Compartments in algal cells and their interaction. Springer-Verlag, Berlin.Google Scholar
  210. Martinez, L. A., M. W. Silver, J. M. King, and A. L. Allredge, 1983. Nitrogen fixation by floating diatom mats: a new source of nitrogen to oligitrophic ocean waters. Science 221: 152–154.PubMedGoogle Scholar
  211. Marton, K. and M. Galun. 1976. In vitro dissociation and reassociation of the symbionts of the lichen Heppia echinulata. Protoplasma 87: 135–143.Google Scholar
  212. McCowen, S. M., L. McArthur, and J. E. Gates. 1987. Azolla fern lectins that specifically recognize endosymbiotic cyanobacteria. Curr. Microbiol. 14: 329.Google Scholar
  213. Meeks, J. C. 1990. Cyanobacterial-bryophyte associations, p. 43–64. In: A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.Google Scholar
  214. Meeks, J. C., C. S. Enderlin, C. M. Joseph, J. S. Chapman, and M. W. L. Lollar. 1985. Fixation of (13N)N2 and transfer of fixed nitrogen in the Anthoceros-Nostoc symbiotic association. Planta 164: 406–414.PubMedGoogle Scholar
  215. Meeks, J. C., C. M. Joseph, and R. Haselkorn. 1988. Organization of the nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros. Arch. Microbiol. 150: 61–71.PubMedGoogle Scholar
  216. Meeks, J. C., R. L. Malmberg, and C. P. Wolk. 1978. Uptake of auxotrophic cells of a heterocyst-forming cyanobacterium by tobacco protoplasts, and the fate of their associations. Planta 139: 55–60.Google Scholar
  217. Mellor, R. B., G. M. Gadd, P. Rowell, and W. D. P. Stewart. 1981. A phytohaemagglutinin from the Azolla-Anabaena symbiosis. Biochem. Biophys. Res. Commun. 99: 13–48.Google Scholar
  218. Mereschkowsky, C. 1905. über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zentralbl. 25: 593–604.Google Scholar
  219. Mereschkowsky, C. 1910. Biol. Zentralbl. 30:278, 321, 353.Google Scholar
  220. Michalowski, C., H. J. Bohnert, and W. Löffelhardt. 1990. A novel allophycocyanin gene (apcD) from Cyanphora paradoxa cyanelles. Nucleic Acids Res. 18: 21–86.Google Scholar
  221. Millbank, J. W. 1984. Nitrogen fixation by lichens, p. 197218. In: N. S. Subba Rao (ed.), Current developments in nitrogen fixation. E. Arnold, London.Google Scholar
  222. Mollenhauer, D. 1988. Weitere Untersuchungen an Geosiphon pyriforme-einer Lebensgemeinschaft von Pilz und Blaualge. Natur und Museum 118: 289–309.Google Scholar
  223. Mollenhauer, D., and R. Mollenhauer, 1988. Geosiphon cultures ahead. Endocyt. Cell Res. 5: 69–73.Google Scholar
  224. Moore, A. W. 1969. Azolla: Biology and agronomic significance. Bot. Rev. 35: 17–34.Google Scholar
  225. Mora-Osejo L. E. 1977. Contribution to the knowledge of Charophyta of Colombia. Mutisia 41: 1–12.Google Scholar
  226. Morden, C. W., and S. S. Golden. 1989. PSB-A genes indicate common ancestry of Prochlorophytes and chloroplaste. Nature 337: 382–385.PubMedGoogle Scholar
  227. Neumann-Spallart, C., M. Brandtner, M. Kraus, J. Jakowitsch, M. G. Bayer, T. L. Maier, H. E. A. Schenk, and W. Löffelhardt. 1990. The petFl gene encoding ferredoxin I is located close to the str operon on the cyanelle genome of Cyanophora paradoxa. FEBS Lett. 268: 55–58.PubMedGoogle Scholar
  228. Neveux, J., G. Duclaux, E. Lafargue, M. Wahl, and L Devos, 1988. Pigments of some symbiotic cyanobacteria. Vieu Milieu 38: 251–258.Google Scholar
  229. Newton, J. W. 1976. Photoproduction of molecular hydrogen by a plant algal symbiotic system. Science 191: 559–561.PubMedGoogle Scholar
  230. Newton, J. W., and A. I. Hermann. 1979. Isolation of cyanobacteria from the aquatic fern Azolla. Arch. Microbiol. 120: 161–165.Google Scholar
  231. Newton, J. W., and J. F. Cavin. 1985. Liberation of ammonia during nitrogen fixation by a facultatively heterotrophic cyanobacterium. Biochim. Biophys. Acta 809: 44–50.Google Scholar
  232. Nierzwicki-Bauer, S. A. 1990. Azolla-Anabaena symbiosis: Use in agriculture, p. 119–136. In: A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, FL.Google Scholar
  233. Oberwinkler, E 1970. Die Gattungen der Basidiolichenen. Dtsch. Bot. Ges. Neue Folge 4: 139–169.Google Scholar
  234. Oberwinkler, F. 1980. Symbiotic relationships between fungus and alga in basidiolichens, p. 305–315. In: W. Schwemmler, and H. E. A. Schenk (ed.), Endocytobiology. W. de Gruyter Berlin.Google Scholar
  235. Oberwinkler, E 1984. Fungus-alga interactions in basidio lichens, p. 739–774. In: H. Hertel (ed.), Beitràge zur Lichenologie, Cramer, Vaduz, Lichtenstein.Google Scholar
  236. Olson, R. R. 1986. Photoadaptations of the caribbean colonial ascidian-cyanophyte symbiosis Trididemnum solidum. Biol. Bull. ( Woods Hole ) 170: 62–74.Google Scholar
  237. Ozenda, P., and G. Clauzade. 1970. Les Lichens, 1st ed. Masson et Cie., Paris.Google Scholar
  238. Pankow, H. 1982. Paulinella chromatophora Lauterb., eine bisher nur im Süßwasser nachgewiesene Thekamöbe, in den Boddengewässern des Darß und des Zingst (südliche Ostsee). Arch.Protistenk. 126: 261–263.Google Scholar
  239. Parry, D. 1988. Ascidian-algal symbiosis: II. Photoadaptation in didemnid ascidians with red cyanophytes. Symbiosis 5: 23–33.Google Scholar
  240. Parry, D. L., and P. Kott. 1988. Co-symbiosis in the Ascidiacea. Bull. Mar. Sci. 42: 149–153.Google Scholar
  241. Pascher, A. 1914. Über Symbiosen von Spaltpilzen und Flagellaten mit Blaualgen. Ber. Dtsch. Bot. Ges. 32: 339–352.Google Scholar
  242. Pascher, A. 1929. Studien über Symbiosen. 1. Über einige Endosymbiosen von Blaualgen in Einzellern. Jahrb. Wiss. Bot. 71: 386–462.Google Scholar
  243. Perez-Urria, E., M. Rodriquez, and C. Vicente. 1990. A crossed mechanism of regulation of urease synthesis between lichen symbionts involving specific urease repressors, p. 179–182. In: P. Nardon, V. GianinazziPearson, A. M. Grenier, L. Margulis, and D. C. Smith (ed.), Endocytobiology IV. Institut National de la Recherche Agronomique, Paris.Google Scholar
  244. Peters, G. A., and H. E. Calvert. 1983. The Azolla-Anabaena azollae symbiosis, p. 109–145. In: L. J. Goff (ed.), Algal symbiosis. Cambridge University Press, Cambridge.Google Scholar
  245. Peters, G. A., and B. C. Mayne. 1974. The Azolla-Anabaena relationship. I. Initial characterization of the association. Plant Physiol. 53: 813–819.PubMedPubMedCentralGoogle Scholar
  246. Peters, G. A., B. C. Mayne, T. B. Ray, and R. E. Toja. Jr., 1979. Physiology and biochemistry of the Azolla-Anabaena symbiosis, p. 325. In: Nitrogen and rice. International Rice Res. Inst., Los Barios, Philippines.Google Scholar
  247. Peters, G. A., R. E. Toia, Jr., W. R. Evans, D. K. Crist, B. C. Mayne, and R. E. Poole. 1980. Characterization and comparison of five Nz fixing Azolla-Anabaena associations. I. Optimization of growth conditions for biomass increase and N content in a controlled environment. Plant Cell Environ. 3: 261–269.Google Scholar
  248. Petit, P. 1982. Phytolectins from the nitrogen-fixing lichen Peltigera horizontalis: The binding pattern of primary protein extract. New Phytol. 91: 705–710.Google Scholar
  249. Petro, M. J., and J. E. Gates. 1987. Distribution of Arthrobacter sp. in the leaf cavities of four species of the N-fixing Azolla fern. Symbiosis 3: 41–48.Google Scholar
  250. Peveling, E. (ed.). 1987. Problems in lichenology in the Eighties. Bibliotheca Lichenologica, vol. 25, 497 p. J. Cramer, Berlin, Stuttgart, FRG.Google Scholar
  251. Pirozynski, K. A., and D. L. Hawksworth (ed.). 1988. Coe-volution of fungi with plants and animals. Academic Press, Oxford.Google Scholar
  252. Poelt, J. 1969. Bestimmungsschlüssel europäischer Flechten. J. Cramer, Lehre, FRG.Google Scholar
  253. Prasad, B. M. 1961. Glaucocystis nostochinearum (Itzigs.) Rabenhorst in India. Bull. Bot. Soc., Univ. of Saugar 13: 44–45.Google Scholar
  254. Pringsheim, E. G. 1958. Organismen mit blaugrünen Assimilatoren. Stud. Plant. Physiol. ( Praha ): 165–184.Google Scholar
  255. Pringsheim, E. G. 1963. Farblose Algen. Fischer, Jena, Germany.Google Scholar
  256. Rai, A. N. 1990a. Cyanobacteria-fungal symbiosis: The cyanolichens, p. 9–42. In: A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.Google Scholar
  257. Rai, A. N. 1990b. Cyanobacteria in symbiosis, p. 1–8. In: A. N. Rai (ed.), CRC handbook of symbiotic cyanobacteria. CRC Press Inc., Boca Raton, FL.Google Scholar
  258. Rai, A. N., M. Borthakur, S. Singh, and B. Bergman. 1989. Anthoceros and Nostoc symbiosis. Immunelectronmicroscopic localization of nitrogenase, glutamine synthetase, phycoerythrin and ribulase-1,5-bisphosphate carboxylase-oxygenase in the cyanobiont and the cultured free-living isolate Nostoc 7801. J. Gen. Microbiol. 135: 385–396.Google Scholar
  259. Rai, A. N., R Rowell, and W. D. P. Stewart. 1981. Glutamate synthase activity in symbiotic cyanobacteria. J. Gen. Microbiol. 126: 515–518.Google Scholar
  260. Randall, S. A., L. Cheng, and R. A. Lewin. 1987. Characteristics of Prochloron/ Ascidian Symbiosis II. Photosynthesis-Irradiance relationships and carbon balance of associations from Palau, Micronesia. Symbiosis 4: 147–170.Google Scholar
  261. Rao, H. S. 1936. The structure and life history of Azolla pinnata R. Brown with remarks on the fossil history of the Hydropterideae. Proc. of the Indian Acad. of Science 2B: 175–200.Google Scholar
  262. Reisser, W. 1984. Endosymbiotic cyanobacteria and cyanellae, p. 91–112. In: A. Pirson and M. H. Zimmermann (ed.), Cellular interactions. Encyclopedia of Plant Physiology, New Ser., vol. 17. Springer-Verlag, Berlin.Google Scholar
  263. Renner, B. 1980. Untersuchungen zum Einfluß der symbiotischen Alge auf den Stoffwechsel und die Struktur des Flechtenlagers. Dissertation, Philipps-Universitat Marburg (microfiche).Google Scholar
  264. Riedl, H. 1977. Micro-Biocoenosis of Anthelia juratzkana. Bryologist 80: 332–334.Google Scholar
  265. Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier. 1979. Generic assignements, strain history and properties of pure cultures of Cyanobacteria. J. Gen. Microbiol. 111: 1–61.Google Scholar
  266. Robinson, D. G., and R. D. Preston, 197la. Studies on the fine structure of Glaucocystis nostochinearum Itzigs. I. Wall structure. J. Exp. Bot. 22: 635–643.Google Scholar
  267. Robinson, D. G., and R. D. Preston. 1971 b. Studies on the fine structure of Glaucocystis nostochinearum Itzigs. II. Membrane morphology and taxonomy. Brit. Phycol. J. 6: 113–128.Google Scholar
  268. Rodgers, G. A., and W. D. P. Stewart. 1977. The cyanophyte-hepatic symbiosis. I. Morphology and physiology. New Phytol. 78: 441–458.Google Scholar
  269. Rosenberg, G., and H. W. Paerl. 1981. Nitrogen fixation by blue-green algae associated with the siphonous green seaweed Codium decorticatum: Effects on ammonium uptake. Marine Biology 61: 151–158.Google Scholar
  270. Rozen, A., H. Arad, M. Schonfeld, and E. Tel-Or. 1986. Fructose supports glycogen accumulation, heterocyst differentiation, dinitrogen fixation and growth of isolated cyanobiont Anabaena azollae. Arch. Microbiol. 145: 187–190.Google Scholar
  271. Rützler, K. 1981. An unusual blue-green alga symbiotic with 2 new species of Ulosa (Porifera: Hymeniacidonidae) from Carrie-Bow Cay Belize. Mr. Ecol. 2: 35–50.Google Scholar
  272. Rützler, K. 1988. Mangrove sponge disease induced by cyanobacterial symbionts failure of a primitive immune system. Dis. Aquat. Org. 5: 143–150.Google Scholar
  273. Sagan, L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14: 225.Google Scholar
  274. Santesson, R. 1967. On taxonomical and biological relations between lichens and non-lichenized fungi. Bot. Not. 120: 497.Google Scholar
  275. Sara, M. 1971. Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis. Marine Biology 11: 214–221.Google Scholar
  276. Schaede, R. 1962. In: F. H. Meyer (ed.), Die pflanzlichen Symbiosen. Fischer, Stuttgart.Google Scholar
  277. Schenk, H. E. A. 1970. Nachweis einer lysozymempfindlichen Stützmembran der Endocyanellen von Cyanophora paradoxa Korschikoff. Z. Naturforsch. 256: 640–656.Google Scholar
  278. Schenk, H. E. A. I973a. Chloroplasten Evolution in biochemischer Sicht, pp. 205. Habilitation. University of Tübingen.Google Scholar
  279. Schenk, H. E. A. 1973b. Endocyanosis as a model for chloroplast evolution, p. 195–197. In: G. Drews (ed.), Abstracts of Symposium on prokaryotic photosynthetic organisms. J. Krause, Freiburg, Germany.Google Scholar
  280. Schenk, H. E. A. 1977. Inwieweit können biochemische Untersuchungen der Endocyanosen zur Klärung der Plastiden-Entstehung beitragen? Arch. Protistenk. 119: 274–300.Google Scholar
  281. Schenk, H. E. A. 1990. Cyanophora paradoxa: a short survey, p. 199–209. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis, and D. C. Smith (ed.), Endocytobiology IV, 4th Intern. Coll. on Endocytobiology and Symbiosis. Institut National de la Recherche Agronomique, Paris.Google Scholar
  282. Schenk, H. E. A., and I. Hofer. 1972. About the light and dark fixation of CO, in the cyanoms Cyanophora paradoxa and Glaucocystis nostochinearum and their endocyanelles, p. 2095–2100. In: G. Forti, M. Avron, and A. Melandri (eds.), Proc. of the 2nd Intern. Congress on Photosynthesis Res., Stresa 1971. W. Junk Publ., The Hague, The Netherlands.Google Scholar
  283. Schenk, H. E. A., M. G. Bayer, and T. Maier. 1987a. Nitrate assimilation and regulation of biosynthesis and disintegration of phycobiliproteids by Cyanophora paradoxa. Indications for a nitrogen store function of the phycobiliproteids. Endocyt. Cell Res. 4: 167–176.Google Scholar
  284. Schenk, H. E. A., M. G. Bayer, and D. Zook. 1987b. Cyanelles-From symbiont to organelle, p. 151–167. In: J. J. Lee and J. F. Fredrick (ed.), Endocytobiology III. Ann. NYAS 503.Google Scholar
  285. Schenk, H. E. A., J. Hanf, and M. Neu-Müller. 1983. The phycobiliproteids in Cyanophora paradoxa as accessorie pigments and nitrogen storage proteins. Z. Naturforsch. 34c: 972–977.Google Scholar
  286. Schenk, H. E. A. K. Poralla, T. Härtner, R. Deimel, and D. Thiel. 1985. Lipids in Cyanophora paradoxa. I. Unusual fatty acid pattern of Cyanocyta Korschikoffiana. Endocytob. Cell Res. 2: 233–238.Google Scholar
  287. Schiller, J. 1954. Neue Mikrophyten aus künstlichen betonierten Wasserbehältern. 2. Mitteilung über neue Cyanosen. Arch. Protistenk. 100: 116–126.Google Scholar
  288. Schmidt, B., L. Kies, and A. Weber. 1979. The pigments of Cyanophora paradoxa, Gloeochaete wittrockiana, and Glaucocystis nostochinearum. Arch. Protistenk. 122: 164–170.Google Scholar
  289. Schnepf, E. 1964. Zur Feinstruktur von Geosiphon pyriforme. Arch. Mikrobiol. 49: 112–131.Google Scholar
  290. Schnepf, E. 1965. Struktur der Zellwände und Cellulosefi- brillen bei Glaucocystis. Planta (Berlin) 67: 213–224.Google Scholar
  291. Schnepf, E. 1966. Organellen-Reduplikation und Zellkompartimentierung, p. 372–393. In: P. Sitte (ed.), Funktionelle und morphologische Organisation der Zelle. 3. Int. Wiss. Konf. Ges. Dtsch. Naturf. u. Ärzte: Probleme der biologischen Reduplikation. Springer, Berlin, Heidelberg, New York.Google Scholar
  292. Schnepf, E. 1975. Conference of the Deutsche Forschungsgemeinschaft, cited by W. Schwemmler, 1989, p. 203.Google Scholar
  293. Schnepf, E., and R. M. Brown. 1971. On relationships between endosymbiosis and the origin of plastids and mitochondria, p. 299–322. In: J. Reinert and H. Ursprung (ed.), Origin and continuity of cell organelles. Springer-Verlag, Berlin.Google Scholar
  294. Schnepf, E., and W. Koch. 1966. Golgi-Apparat und Wasserausscheidung bei Glaucocystis. Z. Pflanzenphysiol. 55: 97–109.Google Scholar
  295. Schnepf, E., W. Koch and G. Deichgräber, 1966. Zur Cytologie und taxonomischen Einordnung von Glaucocystis. Arch. Mikrobiol. 55: 149–174.Google Scholar
  296. Schwemmler, W. 1979. Mechanismen der Zellevolution. W. de Gruyter, Berlin.Google Scholar
  297. Schwemmler, W. 1989. Symbiogenesis, a macro-mechanism of evolution. W. de Gruyter, Berlin.Google Scholar
  298. Schwendener, S. 1869. Die Algentypen der Flechtengonidien. In: Programme für die Rektoratsfeier der Universität. Schultze, Basel, Switzerland.Google Scholar
  299. Scott, O. T. 1987. Major acyllipids of cyanelles from Glaucocystis nostochinearum. In: J. J. Lee and J. E Fredrick (ed.), Endocytobiology III. Ann. NYAS 503: 555–558.Google Scholar
  300. Scott, O. T., R. W. Castenholz, and H. T. Bonnett. 1984. Evidence for a peptidoglycan envelope in the cyanelles of Glaucocystis nostochinearum Itzigsohn. Arch, Microbiol. 139: 130–138.Google Scholar
  301. Sculthorpe, C. D. 1967. The biology of aquatic vascular plants. Arnold, London.Google Scholar
  302. Seckbach, J., J. E Fredrick, and D. J. Garbary. 1983. Auto-or exogenous origin of transitional algae: an appraisal, p. 947–962. In: H. E. A. Schenk and W. Schwerrimler (ed.), Endocytobiology II. De Gruyter, Berlin.Google Scholar
  303. Seckbach, J., H. Nagashima, and I. Fukuda. 1990. Autogenous, eukaryogenesis: contradiction or completion of endosymbiotic evolution, p. 575–578. In: P. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis., and D. C. Smith (ed.), Endocytobiology IV. 4th Intern. Coll. on Endocytobiology and Symbiosis. INRA, Paris.Google Scholar
  304. Sharma, E, B. Bergman, L. Hällbom, and A. v. Hofsten. 1982. Ultrastructural changes of Nostoc of Peltigera canina in presence of SO2. New Phytologist 92:573–579.Google Scholar
  305. Shi, D.-J., and D. O. Hall. 1988. The Azolla-Anabaena association: Historical perspective, symbiosis and energy metabolism. Botanica Rev. 54: 354–386.Google Scholar
  306. Shi, D.-J., M. Brouers, D. O. Hall, and R. J. Robins, 1987. The effects of immobilization on the biochemical, physiological and morphological features ofAnabaena azollae, 1987. Planta 172: 298–308.PubMedGoogle Scholar
  307. Singh, A. and O. N. Srivastava. 1985a. Effect of light intensity on the growth of Azolla pinnata R. Brown at Ran-chi, India. Hydrobiologica 126: 49.Google Scholar
  308. Singh, A. and O. N. Srivastava, 1985b. Effect of photoperiod on the growth of Azolla pinnata R. Brown. Hydro-biologica 123: 211.Google Scholar
  309. Singh, P. K. 1979. Use of Azolla rice production in India, P. 407. In: Nitrogen and Rice. International Rice Research Institute, Los Banos, Philippines.Google Scholar
  310. Skuja, H. 1950. Phylogenetische Stellung der Glaucophy- ceen, p. 823. Proc. V II Int. Bot. Congr., Stockholm.Google Scholar
  311. Skuja, H. 1954. Glaucophyta, p. 56–57. In: H. Melcher and E. Werdemann (ed.), Syllabus der Pflanzenfamilien, vol. 1. Borntraeger, Berlin.Google Scholar
  312. Slocum, R. D., and G. L. Floyd. 1977. Light and electron microscopic investigations in the Dictyonemataceae (basidiolichens). Can. J. Bot. 55: 2565–2573.Google Scholar
  313. Smith, D. C., and A. E. Douglas. 1987. The biology of symbiosis. E. Arnold. London.Google Scholar
  314. Smith, G. M., 1955. Cryptogamic Botany, vol. 2, 2nd ed. McGraw-Hill; New York.Google Scholar
  315. Stanier, R. Y., R. Kunisawa, M. Mandel, and G. CohenBazire, 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bact. Rev. 35: 171–205.PubMedPubMedCentralGoogle Scholar
  316. Starnes, S. M., D. H. Lambert, E. S. Maxwell, S. E. Stevens, R. D. Porter, and J. M. Shively. 1985. Cotranscription of the large and small subunit genes of ribulose-1,5bisphosphate carboxylase/oxygenase in Cyanophora paradoxa. FEMS Microbiol. Lett. 28: 165–169.Google Scholar
  317. Stevanovic, S., M. G. Bayer, W. Tröger, and H. E. A. Schenk. 1989. Cyanophora paradoxa Korsch.: Ferredoxin partial amino-terminal amino acid sequence, phylogenetic/taxonomic evidence. Endocytobiosis Cell Res. 6: 219–226.Google Scholar
  318. Stewart, W. D. P. 1977. A botanical ramble among the blue-green algae. Br. Phycol. J. 12: 89–115.Google Scholar
  319. Stewart, W. D. R, R. Rowell, and A. N. Rai, 1983. Cyanobacteria-eukaryotic plant symbioses. Ann. Microbiol. 134B: 205–228.Google Scholar
  320. Stirewalt, V. L., and D. A. Bryant. 1989a. Molecular cloning and nucleotide sequence of the petG gene of the cyanelle genome of Cyanophora paradoxa. Nucl. Acids Res. 17: 10095PubMedPubMedCentralGoogle Scholar
  321. Stirewalt, V. L., and D. A. Bryant. 1989b. Nucleotide sequence of the psbk gene of the cyanelle genome of Cyanophora paradoxa. Nucl. Acids Res. 17: 10096.PubMedPubMedCentralGoogle Scholar
  322. Stocker-Wörgötter, E., and R. Türk. 1989. Artificial cultures of the cyanobacterial lichen Peltigera didactyla (Peltigeraceae) in the natural environment. Pl. Syst. Evol. 165: 39–48.Google Scholar
  323. Stoddart, J. A. 1989. Foliose Dictyoceratida of the Australian Great Barrier Reef, Australia. III. Preliminary electrophoretic systematics. Mar. Ecol. 10: 167–178.Google Scholar
  324. Strasser, R, and G. Falkner, 1986. Characterization of the glutamate/aspartate-transport system in a symbiotic Nostoc sp. Planta 168: 381–385.Google Scholar
  325. Svenson, H. K. 1944. The new world species of Azolla. Amer. Fern J. 34: 69–84.Google Scholar
  326. Taylor, D. L. 1970. Chloroplasts as symbiotic organelles. Cytology 27: 29–64.Google Scholar
  327. Taylor, E J. R. 1974. Implications and extensions of the Serial Endosymbiosis Theory of the origin of eukaryotes. Taxon 23: 229–258.Google Scholar
  328. Tell, G. 1979. Chlorophyceae d’eau douce pares et nouvelles de la republique Argentine. Rev. Algol., N.S. 14: 39–48.Google Scholar
  329. Tel-Or, E., and T. Sandovsky, 1982. The response of the nitrogen-fixing cyanobacterium Anabaena azollae to combined nitrogen compounds and sugar. Israel. J. Bot. 31: 329–336.Google Scholar
  330. Thwaites, G. H. K. 1849. On the gonidia of lichens. Ann. Mag. nat. Hist., ser. 2, 3: 219–222.Google Scholar
  331. Trench, R. K. 1981. Chloroplasts: presumptive and de facto organelles, Ann. N. Y. Acad. Sciences 361: 341–355.Google Scholar
  332. Trench, R. K. 1982. Physiology, biochemistry, and ultra-structure of cyanellae, p. 257–288. In: F. E. Round and D. J. Chapman (ed), Progress in phycological research, vol. 1. Elsevier Biomed. Press. Amsterdam.Google Scholar
  333. Trench, R. K., and G. S. Ronzio. 1978. Aspects on the relation between Cyanophora parodoxa (Korschikoff) and its endosymbiotic cyanelles Cyanocyta korschikofj’iana (Hall and Claus). II. The photosynthetic pigments. Proc. Royal Soc. London B202: 445–462.Google Scholar
  334. Tschermak-Woess, E. 1988. The algal partner, p. 39–94. In: M. Galun (ed.), Handbook of lichenology, vol. 1. CRC Press, Boca Raton, FL.Google Scholar
  335. Tuan, D. T., and T. Q. Thuyet. 1979. Use of Azolla in rice production in Vietnam, p. 395–405. In: Nitrogen and rice. International Rice Institute, Los Banos, Philippines.Google Scholar
  336. Ueda, K. 1961. Structure of plant cells with special reference to lower plants. VI. Structure of chloroplasts in algae. Cytologia. 26: 344–358.Google Scholar
  337. Van den Eynde, H., R. De Baere, E. De Roeck, Y. Van de Peer, A. Vandenberghe, R Willekens, and R. de Wachter. 1988. The 5S ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastids and cyanobacteria. J. Mol. Evol. 27: 126–132.PubMedGoogle Scholar
  338. Verma, R. R, and K. D. N. Singh. 1973. Phytological survey of Sikandarpur Lake at Muzaffarpur Series I. I.dian Sci Cong. Assoc. Proc. 60: 288.Google Scholar
  339. Villareal, T. A. 1988. Host-symbiont interactions in the Rhizosolenia-Richelia association. J. Phycol. 24 (2 Suppl.): 10.Google Scholar
  340. Villareal, T. A. 1989. Division cycles in the nitrogen-fixing Rhizosolenia (Bacillariophyceae)-Riche/ia (Nostocaceae) symbiosis. Br. Phycol. J. 24: 357–365.Google Scholar
  341. Voskoboinikov, G., V. Odintsov, M. Propp, and E. Lobakova. 1990. Structure of symbionts associated with hydrocoral Millepora and nitrogen fixation, p. 297–301. In: R. Nardon, V. Gianinazzi-Pearson, A. M. Grenier, L. Margulis, and D. C. Smith (ed.), Endocytobiology IV. Institut National de la Recherche Agronomique, Paris.Google Scholar
  342. Wallace, W. H., and J. E. Gates, 1986. Identification of eu-bacteria isolated from leaf cavities of four species of the N-fixing Azolla fern as Arthrobacter Conn and Dimmick. Appl. Environ. Microbiol. 52: 425–429.PubMedPubMedCentralGoogle Scholar
  343. Wasmann, C. C., W. Löffelhardt, and H. J. Bohnert. 1987. Cyanelles: Organization and molecular biology, p. 303–324. In: P. Fay and C. Van Baalen (ed.), The cyanobacteria. Elsevier Sci. Publ. (Biomed. Div.) Amsterdam, The Netherlands.Google Scholar
  344. Watanabe, I. 1982. Azolla-Anabaena symbiosis-its physiology and use in tropical agriculture, p. 169. In: Y. R. Dommergues and H. G. Diems (ed.), Microbiology of tropical soils and plant productivity. Martinus Nijoff, The Hague, The Netherlands.Google Scholar
  345. Watanabe, A., and T. Kiyohara. 1963. Symbiotic blue-green algae of lichens, liverworts and cycads, p. 189–196. In: Japanese Society of Plant Physiologists (ed.), Microalgae and photo-synthetic Bacteria. Special issue of Plant and Cell Physiology. University of Tokyo Press, Tokyo, Japan.Google Scholar
  346. Watanabe, I., C. R. Espinas, N. S. Berja, and B. A. Ali-magno, 1977. Utilization of the Azolla-Anabaena complex as a nitrogen fertilizer for rice. IRRI Res. Paper Ser. 11: 15.Google Scholar
  347. Waterbury, J. B., and R. Y. Stanier, 1978. Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol. Rev. 42: 2–44.PubMedPubMedCentralGoogle Scholar
  348. Weare, N. M., F Azam, T. H. Mague, and O. Holm-Hansen. 1974. Microautoradiographic studies of the marine phycobionts Rhizosolenia and Richelia. J. Phycol. 10: 369–371.Google Scholar
  349. Wettstein, R. von. 1915. Geosiphon Fr. Wettst., eine neue interessante Siphonee. Osten. Bot. Z. 65: 145–156.Google Scholar
  350. Wickstrom C. E, and R. W. Castenholz, 1978. Association of Pleurocapsa and Calothrix cyanophyta in a thermal stream. J. Phycol. 14: 84–88.Google Scholar
  351. Wilkinson, C. R. 1979. Bdellovibrio-like parasite of cyanobacteria symbiotic in marine sponges. Arch. Microbiol. 123: 101–104.Google Scholar
  352. Wilkinson, C. R. 1980. Cyanobacteria symbiotic in marine sponges, p. 553–563. In: W. Schwemmler and H. E. A. Schenk (ed.), Endocytobiology I. Endosymbiosis and Cell Biology. W. de Gruyter, Berlin.Google Scholar
  353. Wilkinson, C. R. 1983. Phylogeny of bacterial and cyanobacterial symbionts in marine sponges, p. 993–1002. In: H. E. A. Schenk and W. Schwemmler (ed.), Endocytobiology II. Intracellular space as oligogenetic ecosystem. W. de Gruyter, Berlin.Google Scholar
  354. Wilkinson, C. R. 1987. Significance of microbial symbionts in sponge evolution and ecology. Symbiosis 4: 135–146.Google Scholar
  355. Wilkinson, C. R., and E. Evans, 1989. Sponge distribution across Davies Reef Great Barrier Reef, Australia, relative to location depth and water movement. Coral Reefs 8: 1–7.Google Scholar
  356. Willison, J. H. M., and R. M. Brown, Jr. 1978. A model for the pattern of deposition of microfibrils in the cell wall of Glaucocystis. Planta 141: 51–58.Google Scholar
  357. Wirth, V. 1980. Flechtenflora. UTB Ulmer Verl., Stuttgart. Wujek, D. E. 1979. Intracellular bacteria in the blue-green alga Pleurocapsa minor. Trans. Am. Microsc. Soc. 98: 143–145.Google Scholar
  358. Zaika, V. E., and I. I. Malinochka, 1986. Symbiosis of cyanobacteria with dinophysiales dinoflagellates. Dokl. Akad. NAUK UKR SSR Ser. B Geol. Khim. Biol. NAUKI, 0 (12): 67–69.Google Scholar
  359. Zimmermann, W., T. Lumpkin, and I. Watanabe. 1988. Biochemical taxonomy of Azola-Anabaena, section Azolla, p. 240. In: H. Bothe, F J. de Bruijn, and W. E. Newton (ed.), Nitrogen fixation: Hundred years after. G. Fischer, Stuttgart.Google Scholar
  360. Zimmermann, M. R, F C. Thomas, J. E. Thompson, C. Djerassi, H. Streiner, E. Evans, and P. T. Murphy. 1989. The distribution of lipids and sterols in cell types from the marine sponge Pseudaxinyssa sp. Lipids 24: 210–216.Google Scholar
  361. Zook, D., H. E. A. Schenk, D. Thiel, K. Poralla, and T. Härtner. 1986. Lipids in Cyanophora paradoxa: II. Arachidonic acid in the lipid fractions of the endocyanelle. Endocytob. Cell Res. 3: 99–103.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Hainfried E. A. Schenk

There are no affiliations available

Personalised recommendations