The Prokaryotes pp 3691-3709 | Cite as

The Genus Chlamydia

  • Patricia I. Fields
  • Robert C. Barnes


Members of the genus Chlamydia are obligate intracellular prokaryotes whose unique life style has earned them their own order, family, and genus within the kingdom Prokaryotae. The chlamydiae have a unique biphasic developmental cycle that alternates between a spore-like, infectious, metabolically inactive particle, the elementary body (EB), and a noninfectious, metabolically active, replicative form, the reticulate body (RB). The chlamydial outer envelop shares some features with the envelops of Gram-negative organisms but it lacks peptidoglycan, a major structural component of bacterial cell walls. The chlamydiae seem to be completely dependent on their host for high-energy metabolities. However, they are capable of synthesizing their own macromolecules.


Chlamydia Trachomatis Pelvic Inflammatory Disease Chlamydial Infection Elementary Body Major Outer Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Liturature Cited

  1. Alexander, J. J. 1968. Separation of protein synthesis in meningopneumonitis agent from that in L cells by differential susceptibility to cycloheximide. J. Bacteriol. 95: 327–332.PubMedPubMedCentralGoogle Scholar
  2. Alexander, J. J. 1969. Effect of infection with the meningopneumonitis agent on deoxyribonucleic acid and protein synthesis by its L-cell host. J. Bacteriol. 97: 653–657.PubMedPubMedCentralGoogle Scholar
  3. Allan, I., and J. H. Pearce. 1983 Amino acid requirements of strains of Chlamydia trachomatis and C. psittaci growing in McCoy cells: relationship with clinical syndrome and host origin. J. Gen. Microbiol. 129: 2001–2007.PubMedGoogle Scholar
  4. Allen, J. E., and R. S. Stephens. 1989. Identification by sequence analysis of two-site posttranslational processing of the cysteine-rich outer membrane protein 2 of Chlamydia trachomatis serovar L2. J. Bacteriol. 171: 285–291.PubMedPubMedCentralGoogle Scholar
  5. Bader, J. P., and H. R. Morgan. 1958. Latent viral infections of cells in tissue culture. VI. Role of amino acids, glutamine, and glucose in psittacosis virus propogation in L cells. J. Exp. Med. 108: 617–630.PubMedPubMedCentralGoogle Scholar
  6. Baehr, W., Y. X. Zhang, T. Joseph, H. Su, E E. Nano, K. D. E. Everett, and H. D. Caldwell. 1988. Mapping and antigenic domains expressed by Chlamydia trachomatis major outer membrane genes. Proc. Natl. Acad. Sci. USA 85: 4000–4004.PubMedPubMedCentralGoogle Scholar
  7. Barbour, A. G., K.-I. Amano, T. Hackstadt, L. Perry, and H. D. Caldwell. 1982. Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J. Bacteriol. 151: 420–428.Google Scholar
  8. Batteiger, B. E., W. J. Newhall V, and R. B. Jones. 1985. Differences in outer membrane proteins of lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis. Infect. Immun. 50: 488–494.PubMedPubMedCentralGoogle Scholar
  9. Bavoil, R, A. Ohlin, and J. Schachter. 1984. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect. Immun. 44: 479–485.PubMedPubMedCentralGoogle Scholar
  10. Bedson, S. R, and J. O. W. Bland. 1932. Morphological study of the psittacosis virus with description of a developmental cycle. Brit. J. Exp. Pathol. 13: 461–466.Google Scholar
  11. Black, C. M., R. C. Barnes, K. A. Birkness, B. P. Holloway, and L. W. Mayer. 1989. Nucleotide sequence of the common plasmid of Chlamydia trachomatis serovar L2: Use of compatible deletions to generate overlapping fragments. Curr. Microbiol. 19: 67–74.Google Scholar
  12. Brade, H., L. Brade, and E E. Nano. 1987. Chemical and serological investigations on the genus-specific lipopolysaccharide epitope of Chlamydia. Proc. Natl. Acad. Sci. USA 84: 2508–2512.PubMedPubMedCentralGoogle Scholar
  13. Brade, L., E E. Nano, S. Schlecht, S. Schramek, and H. H. Brade. 1987. Antigenic and immunogenic properties of recombinants from Salmonella typhimurium and Salmonella minnesota rough mutants expressing in their lipopolysaccharide a genus-specific chlamydial epitope. Infect. Immun. 55: 482–486.PubMedPubMedCentralGoogle Scholar
  14. Brade, L., M. Nurminen, R. H. Makela, and H. Brade. 1985. Antigenic properties of Chlamydia trachomatis lipopolysaccharide. Infect. Immun. 48: 569–572.PubMedPubMedCentralGoogle Scholar
  15. Brownridge, E., and R B. Wyrick. 1979. Interaction of Chlamydia psittaci reticulate bodies with mouse peritoneal macrophages. Infect. Immun. 24: 697–700.PubMedPubMedCentralGoogle Scholar
  16. Brunham, R. C., C.-C. Kuo, and W. J. Chen. 1985. Systemic Chlamydia trachomatis infection in mice: a comparison of lymphogranuloma venereum and trachoma biovars. Infect. Immun. 48: 78–82.PubMedPubMedCentralGoogle Scholar
  17. Brunham, R. C., C.-C. Kuo, L. Cles, and K. K. Holmes. 1983. Correlation of host immune response with quantitative recovery of Chlamydia trachomatis from the human endocervix. Infect. Immun. 39: 1491–1494.PubMedPubMedCentralGoogle Scholar
  18. Bryne, G. I., and J. W. Moulder. 1978. Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and He La cells. Infect. Immun. 19: 598–606.Google Scholar
  19. Caldwell, H. D., J. Kromhout, and J. Schachter. 1981. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 31: 1161–1176.PubMedPubMedCentralGoogle Scholar
  20. Caldwell, H. D., C. C. Kuo, and G. E. Kenny. 1975. Antigenic analysis of chlamydiae by two-dimensional immunoelectrophoresis. I. Antigenic heterogeneity between C. trachomatis and C. psittaci. J. Immunol. 115: 963–968.PubMedGoogle Scholar
  21. Campbell, L. A., C.-C. Kuo, and J. T. Grayston. 1987. Characterization of the new Chlamydia agent, TWAR, as a unique organism by restriction endonuclease analysis and DNA-DNA hybridization. J. Clin. Microbiol. 25: 1911–1916.PubMedPubMedCentralGoogle Scholar
  22. Ceballos, M. M., and T. P. Hatch. 1979. Use of HeLa cell guanine nucleotides by Chlamydia psittaci. Infect. Immun. 25: 98–102.PubMedPubMedCentralGoogle Scholar
  23. Chang, J. J., K. Leonard, T. Arad, T. Pitt, Y. X. Zhang, and L. H. Zhang. 1982. Structural studies of the outer membrane of Chlamydia trachomatis by electron microscopy. J. Mol. Biol. 161: 579–590.PubMedGoogle Scholar
  24. Comanducci, M., S. Ricci, and G. Ratti. 1988. The structure of a plasmid of Chlamydia trachomatis believed to be required for growth within mammalian cells. Molec. Microbiol. 2: 531–538.Google Scholar
  25. Costerton, J. W., L. Pffenroth, J. C. Wilt, and N. Kordova. 1976. Ultrastructural studies of the nucleoids of the pleomorphic forms of Chlamydia psittaci 6BC: a comparison with bacteria. Can. J. Microbiol. 22: 16–28.PubMedGoogle Scholar
  26. Cox, R. L., C.-C. Kuo, J. T. Grayston, and L. A. Campbell. 1988. Deoxyribonucleic acid relatedness of Chlamydia sp. strain TWAR to Chlamydia trachomatis and Chlamydia psittaci. Int. J. Syst. Bacteriol. 38: 265–268.Google Scholar
  27. Dwyer, R. S. C., J. D. Treharne, B. R. Jones, and J. Herring. 1972. Results of microimmunofluorescence tests for the detection of type specific antibody in certain chlamydial infections. Br. J. Vener. Dis. 48: 452–458.PubMedPubMedCentralGoogle Scholar
  28. Eissenberg, L. G., and P. B. Wyrick. 1981. Inhibition of phagolysosomal fusion is localized to Chlamydia psittaciladen vacuoles. Infect. Immun. 32: 889–896.PubMedPubMedCentralGoogle Scholar
  29. Eissenberg, L. G., P. B. Wyrick, C. H. Davis, and J. W. Rumpp. 1983. Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion. Infect. Immun. 40: 741–751.Google Scholar
  30. Engel, J. N., and D. Ganem. 1987. Chlamydial rRNA operons: gene organization and identification of putative tandem promoters. J. Bacteriol. 169: 5678–5685.PubMedPubMedCentralGoogle Scholar
  31. Friis, R. R. 1972. Interaction of L cells and Chlamydia psittaci: entry of the parasite and host responses to its development. J. Bacteriol. 110: 706–721.PubMedPubMedCentralGoogle Scholar
  32. Frutos, R., M. Pages, M. Bellis, G. Roizes, and M. Bergoin. 1989. Pulse-field gel electrophoresis determination of the genome size of obligate intracellular bacteria belonging to the genera Chlamydia, Rickettsiella, and Porochlamydia. J. Bacteriol. 171: 4511–4519.PubMedPubMedCentralGoogle Scholar
  33. Garrett, A. J., M. J. Harrison, and G. P. Manire 1974. A search for the bacterial mucopeptide component of muramic acid in Chlamydia. J. Gen. Microbiol. 80: 315–318.PubMedGoogle Scholar
  34. Gerloff, R. K., D. B. Ritter, and R. O. Watson. 1970. Studies on thermal denaturation of DNA from various Chlamydiae. J. Infect. Dis. 121: 65–69.PubMedGoogle Scholar
  35. Gordon, R B., I. A. Harper, A. L. Quan, J. D. Treharne, R. S. C. Dwyer, and J. A. Garland. 1969. Detection of Chlamydia (Bedsonia) in certain infections of man. I. Laboratory procedures: comparison of yolk sac and cell culture for detection and isolation. J. Infect. Dis. 120: 451–462.Google Scholar
  36. Gordon, F. B., and A. L. Quan. 1965. Isolation of the trachoma agent in cell culture. Proc. Soc. Exp. Biol. Med. 118: 354–359.PubMedGoogle Scholar
  37. Grayston, J. T. 1967. Immunization against trachoma. First international conference on vaccine against viral and rickettsial diseases of man. Pan American Health Organization Scientific Publication 147: 546–549.Google Scholar
  38. Grayston, J. T., C.-C. Kuo, L. A. Campbell, and S.-P. Wang. 1989. Chlamydia pneumoniae sp. nov. for Chlamydia sp. strain TWAR. Int. J. Syst. Bacteriol. 39: 88–90.Google Scholar
  39. Grayston, J. T., C.-C. Kuo, S.-P. Wang, and J. Altman. 1986. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory infections. N. Engl. J. Med. 315: 161168.Google Scholar
  40. Grayston, J. T., and S.-R Wang. 1975. New knowledge of chlamydiae and the diseases they cause. J. Infect. Dis. 132: 87–105.PubMedGoogle Scholar
  41. Hackstadt, T. 1986. Identification and properties of chlamydial polypeptides that bind eucaryotic cell surface components. J. Bacteriol. 165: 13–20.PubMedPubMedCentralGoogle Scholar
  42. Hackstadt, T., W. J. Todd, and H. D. Caldwell. 1985. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae ? J. Bacteriol. 161: 25–31.PubMedPubMedCentralGoogle Scholar
  43. Halberstaedter, L., and S. von Prowazek. 1909. Uber Chlamydozoenbefunde bei blenorrhea neonatorum nongonorrhoica. Berl. Klin. Wchenschr. 46: 1839–1844.Google Scholar
  44. Hammerschlag, M. R., K. Suntharalingham, and S. Fikrig. 1985. The effect of Chlamydia trachomatis on luminoldependent chemiluminescence of human polymorphonuclear leukocytes: requirements for opsonization. J. Infect. Dis. 151: 1045–1051.PubMedGoogle Scholar
  45. Hatch, T. P. 1975. Utilization of L-cell nucleoside triphosphates by Chlamydia psittaci for ribonucleic acid synthesis. J. Bacteriol. 122: 393–400.PubMedPubMedCentralGoogle Scholar
  46. Hatch, T. P. 1976. Utilization of exogenous thymidine by Chlamydia psittaci growing in thymidine kinase-containing and thymidine kinase-deficient L cells. J. Bacteriol. 125: 706–712.PubMedPubMedCentralGoogle Scholar
  47. Hatch, T. R 1988. Metabolism of Chlamydia, p. 97–109. In: A. L. Barron (ed.), Microbiology of chlamydia. CRC Press, Boca Raton, FL.Google Scholar
  48. Hatch, T. R, E. Al-Hossainy, and J. A. Silverman. 1982. Adenine nucleotide and lysine transport in Chlamydia psittaci. J. Bacteriol. 150: 662–670.PubMedPubMedCentralGoogle Scholar
  49. Hatch, T. R, M. Miceli, and J. A. Silverman. 1985. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 162: 938–942.PubMedPubMedCentralGoogle Scholar
  50. Hatch, T. R, M. Miceli, and J. E. Sublett. 1986a. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 165: 379–385.PubMedPubMedCentralGoogle Scholar
  51. Hatch, T. R, M. Plaunt, and J. Sublett. 1986b. DNA synthesis by host-free chlamydia, p. 47–50. In: J. D. Oriel, G. Ridgway, J. Schachter, D. Taylor-Robinson, and M. Ward (ed.), Chlamydial infections. Cambridge University Press, London.Google Scholar
  52. Hatt, C., M. E. Ward, and I. N. Clarke. 1988. Analysis of the entire nucleotide sequence of the cryptic plasmid of Chlamydia trachomatis serovar L1. Evidence for involvement in DNA replication. Nucl. Acids Res. 16: 4053–4067.PubMedPubMedCentralGoogle Scholar
  53. Hayashi, H., and P. K. Sheth. 1982. Simplified method for Chlamydia trachomatis isolation using multi-well plate. Am. J. Public Health 72: 1406–1407.PubMedPubMedCentralGoogle Scholar
  54. Hodinka, R. L., C. H. Davis, J. Choong, and P. B. Wyrick. 1988. Ultrastructural study of endocytosis of Chlamydia trachomatis by McCoy cells. Infect. Immun. 56: 1456–1463.PubMedPubMedCentralGoogle Scholar
  55. Hodinka, R. L., and R B. Wyrick. 1986. Ultrastructural study of mode of entry of Chlamydia psittaci into L929 cells. Infect. Immun. 54: 855–863.PubMedPubMedCentralGoogle Scholar
  56. Horoschak, K. D., and J. W. Moulder. 1978. Division of single host cells after infection with Chlamydiae. Infect. Immun 19: 281–286.PubMedPubMedCentralGoogle Scholar
  57. Hourihan, J. T., T. R. Rota, and A. B. MacDonald. 1980. Isolation and purification of a type-specific antigen from Chlamydia trachomatis propagated in cell culture utilizing molecular shift chromatography. J. Immunol. 124: 2399–2404.PubMedGoogle Scholar
  58. Jenkin, H. M., and V. S. C. Fan. 1971. Contrast of glycogenesis of Chlamydia trachomatis and Chlamydia psittaci strains in HeLa cells, p. 52–59. In: R. L. Nichols (ed.), Trachoma and related disorders caused by chlamydial agents. Excerpta Medica, Amsterdam.Google Scholar
  59. Joseph, T., E E. Nano, C. E Garon, and H. D. Caldwell. 1986. Molecular characterization of Chlamydia trachomatis and Chlamydia psittaci plasmids. Infect. Immun. 51: 699–703.PubMedPubMedCentralGoogle Scholar
  60. Karayiannis, E, and D. Hobson. 1981. Amino acid requirements of a Chlamydia trachomatis genital strain in McCoy cell cultures. J. Clin. Microbiol. 13: 427–432.PubMedPubMedCentralGoogle Scholar
  61. Kingsbury, D. T. 1969. Estimate of the genome size of var- ious microoragnisms. J. Bacteriol. 98: 1400–1401.PubMedPubMedCentralGoogle Scholar
  62. Kingsbury, D. T., and E. Weiss. 1968. Lack of deoxyribonucleic acid homology between species of the genus Chlamydia. J. Bacteriol. 96: 1421–1423.PubMedPubMedCentralGoogle Scholar
  63. Kiviat, N. B., M. Peterson, E. Kinney-Thomas, M. Tam, W. E. Stamm, and K. K. Holmes. 1985. Cytologic manifestations of cervical and vaginal infections. II. Confirmation of Chlamydia trachomatis infection by direct immunofluorescence using monoclonal antibodies. JAMA 253: 997–1000.PubMedGoogle Scholar
  64. Kramer, M. J., and E. B. Gordon. 1971. Ultrastructural analysis of the effects of penicillin and chlortetracycline on the development of a genital tract Chlamydia. Infect. Immun. 3: 333–341.PubMedPubMedCentralGoogle Scholar
  65. Kuo, C. C. 1978. Cultures of Chlamydia trachomatis in mouse peritoneal macrophages: factors affecting organism growth. Infect. Immun. 20: 439–445.PubMedPubMedCentralGoogle Scholar
  66. Lees, M. I., D. M. Newnan, and S. M. Garland. 1988. Simplified culture procedure for large-scale screening for Chlamydia trachomatis infections. J. Clin. Microbiol. 26: 1428–1430.PubMedPubMedCentralGoogle Scholar
  67. Levy, N. J., and J. W. Moulder. 1982. Attachment of cells walls of Chlamydia psittaci to mouse fibroblasts (L cells). Infect. Immun. 37: 1059–1065.PubMedPubMedCentralGoogle Scholar
  68. Lovett, M., C. C. Kuo, K. Holmes, and S. Falkow. 1980. Plasmids of the genus Chlamydia, p. 1250–1252. In: J. D. Nelson, and C. Grassi (ed.), Current chemotherapy and infectious diseases, vol II. American Society for Microbiology, Washington, D.C.Google Scholar
  69. Ma, J. J., K. C. S. Chen. and C.-C. Kuo. 1987. Identification of conserved regions for species and subspecies specific epitopes on the major outer membrane protein of Chlamydia trachomatis. Microb. Pathog. 3: 299–307.Google Scholar
  70. Mallinson, H., S. Sikotra, and O. P. Arya. 1981. Cultural method for large-scale screening for Chlamydia trachomatis genital infection. J. Clin. Pathol. 34: 712–718.PubMedPubMedCentralGoogle Scholar
  71. Matsumoto, A. 1981. Isolation and electron microscopic observation of intracytoplasmic inclusions containing C. psittaci. J. Bacteriol. 145: 609–612.Google Scholar
  72. Matsumoto, A., and G. P. Manire. 1970. Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J. Bacteriol. 101: 278–285.PubMedPubMedCentralGoogle Scholar
  73. Miyagawa, Y., T. Mitamura, H. Yaoi, N. Ishii, H. Nakajima, J. Okanishi, S. Watanabe, and K. Sato. 1935a. Studies on the virus of lymphogranuloma inguinale Nicholas, Favre and Durand. First report. Jap. J. Exp. Med. 13: 118.Google Scholar
  74. Miyagawa, Y., T. Mitamura, H. Yaoi, N. Ishii, and J. Okanishi. 1935b. Studies on the virus of lymphogranuloma inguinale Nicholas, Favre and Durand. Fourth report. Cultivation of the virus on the chorioallantoic membrane of the chick embryo. Jap. J. Exp. Med. 13: 733–750.Google Scholar
  75. Morrison, R. R, K. Lyng, and H. D. Caldwell. 1989. Chlamydial disease pathogenesis: ocular hypersensitivity elicited by a genus-specific 57-kD protein. J. Exp. Med. 169: 663–675.PubMedGoogle Scholar
  76. Moulder, J. W. 1962. The biochemistry of intracellular parasitism. The University of Chicago Press, Chicago.Google Scholar
  77. Moulder, J. W. 1964. The psittacosis group as bacteria. John Wiley and Sons, New York.Google Scholar
  78. Moulder, J. W., D. L. Grisso, and R. R. Brubaker. 1965. Enzymes of glucose catabolism in a member of the psittacosis group. J. Bacteriol. 89: 810–812.PubMedPubMedCentralGoogle Scholar
  79. Moulder, J. W., T. R. Hatch, C.-C. Kuo, J. Schacter, and J. Storz. 1984. Genus Chlamydia Jones, Rake, and Stearns 1945, p. 729–739. In: N. R. Krieg, and J. G. Holt (ed.) Bergey’s manual of systematic bacteriology, 8th edition, vol 1. Williams and Wilkins, Baltimore.Google Scholar
  80. Nano, E E., and H. D. Caldwell. 1985. Expression of the chlamydial genus-specific lipopolysaccharide epitope in Escherichia coli. Science 228: 742–744.PubMedGoogle Scholar
  81. Newhall, W. J., V, and R. B. Jones. 1983. Disulfide-linked oligomers of the major outer membrane protein of Chlamydiae. J. Bacteriol. 154: 998–1001.PubMedGoogle Scholar
  82. Nurminen, M., E. T. Rietschel, and H. Brade. 1985. Chemical characterization of Chlamydia trachomatis lipopolysaccharide. Infect. Immun. 48: 573–575.PubMedPubMedCentralGoogle Scholar
  83. Ormsbee, R. A., and E. Weiss. 1963. Trachoma agent: Glucose utilization by purified suspensions. Science 142: 1077–1078.PubMedGoogle Scholar
  84. Plaunt, M. R., and T. P. Hatch. 1988. Protein synthesis early in the developmental cycle of Chlamydia psittaci. Infect. Immun. 56: 3021–3025.PubMedPubMedCentralGoogle Scholar
  85. Popov, V., E Eb, J.-F. Lefebvre, J. Orfila, and A. Viron. 1978. Morphological and cytochemical study of Chlamydia with EDTA regressive technique and Gautier staining in ultrathin frozen sections of infected cell cultures: A comparison with embedded material. Ann. Microbiol. (Inst. Past.) 129B: 313–337.Google Scholar
  86. Rake, G., C. M. McKee, and M. F. Shaffer. 1940. Agent of lymphogranuloma venereum in the yolk-sac of the developing chick embryo. Proc. Soc. Exp. Biol. Med. 43: 332–334.Google Scholar
  87. Ramsey, K. H., L. S. R Soderberg, and R. G. Rank. 1988. Resolution of chlamydial genital infection in B-cell-deficient mice and immunity to reinfection. Infect. Immun. 56: 1320–1325.PubMedPubMedCentralGoogle Scholar
  88. Rank, R. G., L. S. Soderberg, M. M. Sanders, and B. E. Batteiger. 1989. Role of cell-mediated immunity in the resolution of seconday chlamydial genital infection in guinea pigs infected with the agent of guinea pig inclusion conjunctivitis. Infect. Immun. 57: 706–710.PubMedPubMedCentralGoogle Scholar
  89. Rank, R. G., H. J. White, and A. L. Barron. 1979. Humoral immunity in the resolution of genital infection in female guinea pigs infected with the agent of guinea pig inclusion conjunctivitis. Infect. Immun. 26: 573–579.PubMedPubMedCentralGoogle Scholar
  90. Ripa, K. T., and P.-A. Mardh. 1977. Cultivation of Chlamydia trachomatis in cycloheximide-treated McCoy cells. J. Clin. Microbiol. 6: 328–331.PubMedPubMedCentralGoogle Scholar
  91. Saikku, P., S. P. Wang, M. Kleemola, E. Brander, E. Rusanen, and J. T. Grayston. 1985. An epidemic of mild pneumonia due to an unusual strain of Chlamydia psittaci. J. Infect. Dis. 151: 832–839.PubMedGoogle Scholar
  92. Sardinia, L. M., E. Segal, and D. Ganem. 1988. Developmental regulation of the cysteine-rich outer-membrane proteins of murine Chlamydia trachomatis. J. Gen. Microbiol. 134: 997–1004.PubMedGoogle Scholar
  93. Sarov, I., and Y. Becker. 1969. Trachoma agent DNA. J. Mol. Biol. 42: 581–589.PubMedGoogle Scholar
  94. Sarov, I., and Y. Becker. 1971. Deoxyribonucleic acid-dependent ribonucleic acid polymerase activity in purified trachoma elementary bodies: effect of sodium chloride on ribonucleic acid transcription. J. Bacteriol. 107: 593–598.PubMedPubMedCentralGoogle Scholar
  95. Söderlund, G., and E. Kihlström. 1983. Effect of methylamine and monodansylcadaverine on the susceptibility of McCoy cells to Chlamydia trachomatis infections. Infect. Immun. 40: 534–541.PubMedPubMedCentralGoogle Scholar
  96. Sriprakash, K. S., and E. S. Macavoy. 1987. Characterization and sequence of a plasmid from the trachoma biovar of Chlamydia trachomatis. Plasmid 18: 205–214.PubMedGoogle Scholar
  97. Stephens, R. S., R. Sanchez-Pescador, E. A. Wagar, C. Inouye, and M. S. Urdea. 1987. Diversity of Chlamydia trachomatis major outer membrane protein genes. J. Bacteriol. 169: 3879–3885.PubMedPubMedCentralGoogle Scholar
  98. Stephens, R. S., M R. Tam, C.-C. Kuo, and R C. Nowinski. 1982. Monoclonal antibodies to Chlamydia trachomatis: antibody specificities and antigen chracterization. J. Immunol. 128: 1083–1089.PubMedGoogle Scholar
  99. Stephens, R. S., E. A. Wagar, and U. Edman. 1988a. Developmental regulation of tandem promoters for the major outer membrane protein gene of Chlamydia trachomatis. J. Bacteriol. 170: 744–750.PubMedPubMedCentralGoogle Scholar
  100. Stephens, R. S., E. A. Wagar, and G. K. Schoolnik. 1988b. High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane of Chlamydia trachomatis. J. Exp. Med. 167: 817–831.Google Scholar
  101. Storz, J. 1971. Chlamydia and Chlamydia-induced diseases, p. 119–258.Google Scholar
  102. Charles C. Thomas, Springfield, IL. Storz, J., and L. A. Page. 1971. Taxonomy of the Chlamydiae: Reasons for classifying organisms of the genus Chlamydia, Family Chlamydiaceae, in a separate order, Chlamydiales ord. nov. Int. J. Syst. Bacteriol. 21: 332–334.Google Scholar
  103. Tamura, A. 1967. Studies on RNA synthetic enzymes associated with meningopneumonitis organism. Annu. Rep. Inst. Virus Res. Kyoto Univ. 10: 26–36.Google Scholar
  104. T’ang, E E, H. L. Chang, Y. T. Huang, and K. C. Wang. 1957. Studies on the etiology of trachoma with special reference to isolation of the virus in chick embryo. Chin. Med. J. 75: 429–447.Google Scholar
  105. Tauber, A. I., N. Pavlotsky, J. S. Lin, and P. A. Rice. 1989. Inhibition of human neutrophil NADPH oxidase by Chlamydia serovars E, K, and L2. Infect. Immun. 57: 1108–1112.PubMedPubMedCentralGoogle Scholar
  106. Taylor, H. R., S. L. Johnson, J. Schachter, H. D. Caldwell, and R. A. Prendergast. 1987. Pathogenesis of trachoma: the stimulus of inflamation. J. Immunol. 138: 3023–3027.PubMedGoogle Scholar
  107. Tosi, M. F., and M. R. Hammerschlag. 1988. Chlamydia trachomatis selectively stimulates myeloperoxidase release but not superoxide production by human neutrophils. J. Infect. Dis. 158: 457–460.Google Scholar
  108. Treuhaft, M. W., and J. W. Moulder. 1968. Biosynthesis of arginine in L cells infected with chlamydiae. J. Bacteriol. 96: 2004–2011.PubMedPubMedCentralGoogle Scholar
  109. Tribby, I. I. E., R. R. Friis, and J. W. Moulder. 1973. The effect of chloramphenicol, rifampicin, and naladixic acid on Chlamydia psittaci growing in L cells. J. Infect. Dis. 127: 155–163.PubMedGoogle Scholar
  110. Tribby, I. I. E., and J. W. Moulder. 1966. Availability of bases and nucleosides as precursors of nucleic acids in L cells and in the agent of meningopneumonitis. J. Bacteriol. 91: 2362–2367.PubMedPubMedCentralGoogle Scholar
  111. Wagar, E. A., and R. S. Stephens. 1988. Developmental-form specific DNA-binding proteins in Chlamydia spp. Infect. Immun. 56: 1678–1684.PubMedPubMedCentralGoogle Scholar
  112. Wang, S.-P., C. C. Kuo, R. C. Barnes, R. S. Stephens. and J. T. Grayston. 1985. Immunotyping of Chlamydia trachomatis with monoclonal antibodies. J. Infect. Dis. 152: 791–800.Google Scholar
  113. Wang, S.-P., and J. T. Grayston. 1971. Classification of TRIC and related disorders with micro immunofluorescence, p. 305–321. In: R. L. Nichols (ed.), Trachoma and related disorders caused by chlamydial agents. Excerpta Medica, Amsterdam.Google Scholar
  114. Wang, S.-P., J. T. Grayston, E. R. Alexander, and K. K. Holmes. 1975. Simplified microimmunofluorescence test with trachoma-lymphogranuloma venereum (Chlamydia trachomatis) antigens for use as a screening test for antibody. J. Clin. Microbiol. 1: 250–255.PubMedPubMedCentralGoogle Scholar
  115. Ward, M. E., and A. Murray. 1984. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis. J. Gen.. Microbiol. 130: 1765–1780.PubMedGoogle Scholar
  116. Weisburg, W. G., T. P. Hatch, and C. T. Woese. 1986. Eu-bacterial origin of chlamydiae. J. Bacteriol. 167: 570–574.PubMedPubMedCentralGoogle Scholar
  117. Weiss, E. 1965. Adenosine triphosphate and other requirements for utilization of glucose by agents of the psittacosis-trachoma group. J. Bacteriol. 90: 243–253.PubMedPubMedCentralGoogle Scholar
  118. Weiss, E. 1967. Transaminase activity and other enzymatic reactions involving pyruvate and glutamate in Chlamydia (psittacosis-trachoma group). J. Bacteriol. 93: 177–184.PubMedPubMedCentralGoogle Scholar
  119. Weiss, E., W. E Myers, H. R. Dressler, and H. Chu-Iloon. 1964. Glucose metabolism by agents of the psittacosis-trachoma group. Virol. 22: 551–562.Google Scholar
  120. Wenman, W. M., and R. U. Meuser. 1986. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes. J. Bacteriol. 165: 602–607.PubMedPubMedCentralGoogle Scholar
  121. Williams, D. M., B. Grubbs, and J. Schachter. 1987. Primary murine Chlamydia trachomatis pneumonia in Bcell-deficient mice. Infect. Immun. 55: 2387–2390.PubMedPubMedCentralGoogle Scholar
  122. Williams, D. M., J. Schachter, J. J. Coalson, and B. Grubbs. I 984a. Cellular immunity to the mouse pneumonitis agent. J. Infect. Dis. 149: 630–639.Google Scholar
  123. Williams, D. M., J. Schachter, M. Weiner, and B. Grubbs. 1984b. Antibody in host defense against mouse pneumonitis agent (murine Chlamydia trachomatis). Infect. Immun. 45: 674–678.PubMedPubMedCentralGoogle Scholar
  124. Wyrick, P. B., E. A. Brownridge, and B. E. Ivins. 1978. Interaction of Chlamydia psittaci with mouse peritoneal macrophages. Infect. Immun. 19: 1061–1067.PubMedPubMedCentralGoogle Scholar
  125. Wyrick, P. B., J. Choong, C. H. Davis, S. T. Knight, M. O. Royal, A. S. Maslow, and C. R. Bagnell. 1989. Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect. Immun. 57: 2378–2389.PubMedPubMedCentralGoogle Scholar
  126. Yong, E. C., E. Y. Chi, W. J. Chen, and C. C. Kuo. 1986. Degradation of Chlamydia trachomatis in human polymorphonuclear leukocytes: an ultrastructural study of peroxidase-positive phagolysosomes. Infect. Immun. 53: 427–431.PubMedPubMedCentralGoogle Scholar
  127. Yong, E. C., E. Y. Chi, and C.-C. Kuo. 1987. Differential antimicrobial activity of human mononuclear phagocytes against the human biovars of Chlamydia trachomatis. J. Immunol. 139: 1297–1302.PubMedGoogle Scholar
  128. Zhang, Y.-X., S. G. Morrison, H. D. Caldwell, and W. Baehr. 1989. Cloning and sequence analysis of the major outer membrane protein genes of two Chlamydia psittaci strains. Infect. Immun. 57: 1621–1625.PubMedPubMedCentralGoogle Scholar
  129. Zhang, Y.-X., S. Stewart, T. Joseph, H. R. Taylor, and H. D. Caldwell. 1987a. Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis. J. Immunol. 138: 575–581.PubMedGoogle Scholar
  130. Zhang, Y.-X., N. G. Watkins, S. Stewart, and H. D. Caldwell. 1987b. The low-molecular-mass, cysteine-rich outer membrane protein of Chlamydia trachomatis possesses both biovar-and species-specific epitopes. Infect. Immun. 55: 2570–2573.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Patricia I. Fields
  • Robert C. Barnes

There are no affiliations available

Personalised recommendations