Advertisement

The Prokaryotes pp 3631-3675 | Cite as

The Order Cytophagales

  • Hans Reichenbach

Abstract

In the past decade much has been learnt about the order Cytophagales and about some of the organisms belonging to it, although the majority of its members are as unfamiliar as ever. On the basis of 16S rRNA studies, we can now delimit the group with some confidence and have a well-founded idea of its phylogenetic position (Paster et al., 1985; Woese et al., 1985). Accordingly, the Cytophagales appear to be distantly related to the Bacteroides group, and these two together comprise one of the main branches, perhaps a phylum, in the bacterial phylogenetic system. The substructure of the Cytophaga branch of the phylum is more difficult to evaluate. There is a main line on which we find unicellular gliders—Cytophaga (Cy.*) johnsonae, Cy. lytica, Cy. aquatilis = Flavobacterium (Fv.) aquatile, and Sporocytophaga (Sp.) myxococcoides—but at a lower level unicellular nonmotile bacteria (Fv. breve, i.e., low GC, true flavobacteria) are also found. At a still lower level, a cluster branches off which comprises the unicellular gliders—Flexibacter (Fx.) filiformis = Fx. elegans Fx el, Cy. heparina, and Taxeobacter = Myx 2105), unicellular non-gliding flavobacteria (Fv. ferugineum), but also filamentous, multicellular, gliding (Saprospira) and nonmotile bacteria (Haliscomenobacter). It is obvious from these data that our present definition of genera does not reflect the phylogenetic situation, and also that the grouping in families and perhaps orders needs to be reconsidered. Before that is done, however, 16S rRNA sequences of further species should be determined.

Keywords

Artificial Seawater Fish Pathogen Fish Pathol Columnaris Disease Mineral Salt Agar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aasen, A. J., and S. Liaaen Jensen. 1966a. The carotenoids of flexibacteria II. A new xanthophyll from Saprospira grandis. Acta Chem. Scand. 20: 811–819.Google Scholar
  2. Aasen, A. J., and S. Liaaen Jensen. 1966b. Carotenoids of flexibacteria III. The structures of flexixanthin and deoxyflexixanthin. Acta Chem. Scand. 20: 1970–1988.Google Scholar
  3. Aasen, A. J., and S. Liaaen Jensen. 1966c. Carotenoids of flexibacteria IV. The carotenoids of two further pigment types. Acta Chem. Scand. 20: 2322–2324.Google Scholar
  4. Abbanat, D. R., W. Godchaux, G. Polychroniou, and E. R. Leadbetter. 1985. Biosynthesis of a sulfonolipid in gliding bacteria. Biochem. Biophys. Res. Commun. 130: 873–878.PubMedGoogle Scholar
  5. Abbanat, D. R., E. R. Leadbetter, W. Godchaux, and A. Escher. 1986. Sulphonolipids are molecular determinants of gliding motility. Nature 342: 367–369.Google Scholar
  6. Achenbach, H. 1987. The pigments of the flexirubin-type. A novel class of natural products. Fortschr. Chem. Org. Naturst. 52: 73–111.Google Scholar
  7. Achenbach, H., A. Böttger-Vetter, E. Fautz, and H. Reichenbach. 1982. On the origin of the branched alkyl substituents on ring B of flexirubin-type pigments. Arch. Microbiol. 132: 241–244.Google Scholar
  8. Achenbach, H., A. Böttger-Vetter, D. Hunkler, E. Fautz, and H. Reichenbach. 1983. Investigations on the biosynthesis of flexirubin-The origin of benzene ring B and its substituents. Tetrahedr. 39: 175–185.Google Scholar
  9. Achenbach, H., A. Böttger, W. Kohl, E. Fautz, and H. Reichenbach. 1979. Untersuchungen zur Biogenese des Flexirubins-Herkunft des Benzolringes A und der aromatischen C-Methylgruppen. Phytochem. 18: 961–963.Google Scholar
  10. Achenbach, H., W. Kohl, A. Böttger-Vetter, and H. Reichenbach. 1981. Untersuchungen der Pigmente aus Flavobacterium spec. Stamm C1/2. Tetrahedr. 37: 559–563.Google Scholar
  11. Achenbach, H., W. Kohl, and H. Reichenbach. 1976. Flexirubin, ein neuartiges Pigment aus Flexibacter elegans. Chem. Ber. 109: 2490–2502.Google Scholar
  12. Achenbach, H., W. Kohl, and H. Reichenbach. 1978. The flexirubin-type pigments-a novel class of natural pigments from gliding bacteria. Revista Latinoamericana de Quimica 9: 111–124.Google Scholar
  13. Achenbach, H., W. Kohl, and H. Reichenbach. 1979. Die Konstitutionen der Pigmente vom Flexirubin-Typ aus Cytophaga johnsonae Cy jl. Chem. Ber. 112: 1999–2011.Google Scholar
  14. Achenbach, H., W. Kohl, H. Reichenbach, and H. Kleinig. 1974. Zur Struktur des Flexirubins. Tetrahedr. Lett. 1974: 2555–2556.Google Scholar
  15. Achenbach, H., W. Kohl, W. Wachter, and H. Reichenbach. 1978b. Investigations of the pigments from Cytophaga johnsonae Cy jl. Arch. Microbiol. 117: 253–257.PubMedGoogle Scholar
  16. Achenbach, H., and J. Witzke. 1977. Totalsynthese des Flex- irubin-dimethylethers. Angew. Chem. 89: 198–199.Google Scholar
  17. Adkins, A. M., and R. Knowles. 1984. Reduction of nitrous oxide by a soil Cytophaga in the presence of acetylene and sulfide. FEMS Microbiol. Lett. 23: 171–174.Google Scholar
  18. Adkins, A. M., and R. Knowles. 1986. Denitrification by Cytophaga johnsonae strains and by a gliding bacterium able to reduce nitrous oxide in the presence of acetylene and sulfide. Can. J. Microbiol. 32: 421–424.Google Scholar
  19. Agbo, J. A. C., and M. O. Moss. 1979. The isolation and characterization of agarolytic bacteria from a lowland river. J. Gen. Microbiol. 115: 355–368.Google Scholar
  20. Ajmal, M., and B. C. Hobbs. 1967. Causes and effect of columnaris-type diseases in fish. Nature 215: 141–142.PubMedGoogle Scholar
  21. Alevy Y. G., and M. B. Compas. 1987. Induction of human immunoglobulin synthesis (IgG, IgA) by the novel, T cell independent mitogen Cytophaga allerginae endotoxin. Int. Arch. Allergy Appl. Immunol. 84: 79–84.PubMedGoogle Scholar
  22. Amin, N. E., I. S. Abdallah, M. Faisal, M. El-S. Easa, T. Alaway, and S. A. Alyan. 1988. Columnaris infection among cultured Nile tilapia Oreochromis niloticus. An-tonie van Leeuwenhoek 54: 509–520.Google Scholar
  23. Anacker, R. L., and E. J. Ordal. 1955. Study of a bacteriophage infecting the myxobacterium Chondrococcus columnaris. J. Bacteriol. 70: 738–741.PubMedPubMedCentralGoogle Scholar
  24. Anacker, R. L., and E. J. Ordal. 1959. Studies on the myxobacterium Chondrococcus columnaris I. Serological typing. J. Bacteriol. 78: 25–32.PubMedPubMedCentralGoogle Scholar
  25. Anacker, R. L., and E. J. Ordal. 1959b. Studies on the myxobacterium Chondrococcus columnaris II. Bacteriocins. J. Bacteriol. 78: 33–40.Google Scholar
  26. Anderson, J. I. W., and D. A. Conroy. 1969. The pathogenic myxobacteria with special reference to fish diseases. J. Appl. Bacteriol. 32: 30–39.PubMedGoogle Scholar
  27. Anderson, R. L., and E. J. Ordal. 1961a. Cytophaga succinicans sp. n., a facultatively anaerobic aquatic myxobacterium. J. Bacteriol. 81: 130–138.Google Scholar
  28. Anderson, R. L., and E. J. Ordal. 196lb. CO2-dependent fermentation of glucose of Cytophaga succinicans. J. Bacteriol. 81: 139–146.Google Scholar
  29. Arlet, G., M. J. Sanson-Le Pors, I. M. Casin, M. Ortenberg, and Y. Perol. 1987. In vitro susceptibility of 96 Capnocytophaga strains, including a ß-lactamase producer, to new 0-lactam antibiotics and six quinolones. Antimicrob. Agents Chemother. 31: 1283–1284.PubMedPubMedCentralGoogle Scholar
  30. Asselinearu, J., and F. Pichinoty. 1983. Lipid composition of strains of Flavobacterium and Sphingobacterium. FEMS Microbiol. Lett. 20: 375–378.Google Scholar
  31. Bachmann, B. J. 1955. Studies on Cytophaga fermentans, n. sp., a facultatively anaerobic lower myxobacterium. J. Gen. Microbiol. 13: 541–551.PubMedGoogle Scholar
  32. Bacon, J. S. D., A. H. Gordon, D. Jones, I. E Taylor, and D. M. Webley. 1970. The separation of ß-glucanases produced by Cytophaga johnsonii and their role in the lysis of yeast cell walls. Biochem. J. 120: 67–78.PubMedPubMedCentralGoogle Scholar
  33. Baechler, C. A., and R. S. Berk. 1972. Ultrastructural observations of Pseudomonas aeruginosa: Rhapidosomes. Microstructures 3: 24–31.Google Scholar
  34. Baggi, G. 1985. Ricerche sulla degradazione di acidi dorobenzoici. Ann. Microbiol. 35: 71–78.Google Scholar
  35. Bauer, L. 1962. Untersuchungen an Sphaeromyxa xanthochlora, n. sp., einer auf Tropfkörpern vorkommenden Myxobakterienart. Arch. Hyg. Bakteriol. 146: 392–400.PubMedGoogle Scholar
  36. Baxa, D. V., K. Kawai, and R. Kusuda. 1987a. Molecular taxonomic classification of gliding bacteria isolated from diseased cultured flounder. Fish Pathol. 22: 11–14.Google Scholar
  37. Baxa, D. V., K. Kawai, and R. Kusuda. 1987b. Experimental infection of Flexibacter maritimus in black sea bream (Acanthopagrus schlegeli) fry. Fish Pathol. 22: 105–109.Google Scholar
  38. Baxa, D. V., K. Kawai, and R. Kududa. 1988. Detection of Flexibacter maritimus by fluorescent antibody technique in experimentally infected black sea bream fry. Fish Pathol. 23: 29–32.Google Scholar
  39. Becker, C. D., and M. P. Fujihara. 1978. The bacterial pathogen Flexibacter columnaris and its epizootiology among Columbia River fish, monograph no. 2. American Fish. Society, Washington, DC.Google Scholar
  40. Behrens, H. 1978. Charakterisierung der DNA gleitender Bakterien der Ordnung Cytophagales. Doctoral thesis, Technical University Braunschweig, GermanyGoogle Scholar
  41. Berg, B., B. V. Hofsten, and G. Pettersson. 1972. Electron-microscopic observations on the degradation of cellulose fibres by Cellvibrio fulvus and Sporocytophaga myxococcoides. J. Appl. Bacteriol. 35: 215–219.PubMedGoogle Scholar
  42. Bernardet, J. F. 1989. Etude phénotypique et génomique des bactéries appartenant aux genres Cytophaga et Flexibacter (ordre des Cytophagales) et comparaison avec le genre Flavobacterium; application à l’identification et à la taxonomie des espèces ichthyopathogènes. Doctoral thesis, University of Paris V II.Google Scholar
  43. Bernardet, J. F., A. C. Campbell, and J. A. Buswell. 1990. Flexibacter maritimus is the agent of “black patch necrosis” in Dover sole in Scotland. Dis. Aquat. Org. 8: 233–237.Google Scholar
  44. Bernardet, J. F., and P. A. D. Grimont. 1989. Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacter psychrophilus sp. nov., nom. rev., and Flexibacter maritimus Wakabayashi, Hikida, and Masumura 1986. Int. J. Syst. Bacteriol. 39: 346–354.Google Scholar
  45. Bernardet, J. F, and B. Kerouault. 1989. Phenotypic and genomic studies of “Cytophaga psychrophila” isolated from diseased rainbow trout (Oncorhynchus mykiss) in France. Appl. Environm. Microbiol. 55: 1796–1800.Google Scholar
  46. Bhatnagar, R. D. S., and A. J. Musgrave. 1970. Cytochemistry, morphogenesis, and tentative identification of mycetomal microorganisms of Sitophilus granarius L. (Coleoptera). Can. J. Microbiol. 16: 1357–1362.PubMedGoogle Scholar
  47. Bolton, R. W., and J. K. Dyer. 1986. Human complement activation by purified Capnocytophaga exopolysaccharide. Measurement by radioimmunoassay. J. Period. Res. 21: 634–639.Google Scholar
  48. Bootsma, R., and J. P. M. Clerx. 1976. Columnaris disease of cultured carp Cyprinus carpio L. Characterization of the causative agent. Aquacult. 7: 371–384.Google Scholar
  49. Bortels, H. 1956. Die Bedeutung einiger Spurenelemente für Cellvibrio-und Cytophaga-Arten. Arch. Mikrobiol. 25: 226–245.Google Scholar
  50. Bovallius, A. 1978. Increased extracellular production of a cholinesterase-solubilising factor by Cytophaga NCMB 1314 during magnesium starvation. Can. J. Microbiol. 24: 381–385.PubMedGoogle Scholar
  51. Bovallius, A. 1979. Morphological and chemical characteristics of a Cytophaga sp. grown under conditions of magnesium excess and magnesium limitation. J. Gen. Microbiol. 113: 137–145.Google Scholar
  52. Brenner, D. J., D. G. Hollis, G. R. Fanning, and R. E. Weaver. 1989. Capnocytophaga canimorsus sp. nov. (formerly CDC group DF-2), a cause of septicemia following dog bite, and C. cynodegmi sp. nov., a cause of localized wound infection following dog bite. J. Clin. Microbiol. 27: 231–235.Google Scholar
  53. Brockman, E. R. 1967. Fruiting myxobacteria from the South Carolina coast. J. Bacteriol. 94: 1253–1254.PubMedPubMedCentralGoogle Scholar
  54. Brown, E. J., J. J. Pignatello, M. M. Martinson, and R. L. Crawford. 1986. Pentachlorophenol degradation: a pure bacterial culture and an epilithic microbial consortium. Appl. Environm. Microbiol. 52: 92–97.Google Scholar
  55. Bullock, G. L. 1972. Studies on selected myxobacteria pathogenic for fishes and on bacterial gill disease in hatchery-reared salmon, p. 1–30. In: Technical papers, Bureau of Sport Fisheries and Wildlife. U.S. Dept. Interior, Washington, DC.Google Scholar
  56. Burchard, R. P. 1984. Inhibition of Cytophaga U67 gliding motility by inhibitors of polypeptide synthesis. Arch. Microbiol. 139: 248–254.Google Scholar
  57. Burchard, R. P., and D. T. Brown. 1973. Surface structure of gliding bacteria after freeze-etching. J. Bacteriol. 114: 1351–1355.PubMedPubMedCentralGoogle Scholar
  58. Burlando, B., M. A. Sabatini, and E. Gaino. 1988. Association between calcareous Clathrina cerebum (Haeckel) and bacteria: electron microscope study. J. Exp. Mar. Biol. Ecol. 116: 35–42.Google Scholar
  59. Callies, E., and W. Mannheim. 1978. Classification of the Flavobacterium-Cytophaga complex on the basis of respiratory quinones and fumarate respiration. Int. J. Syst. Bacteriol. 28: 14–19.Google Scholar
  60. Campbell, A. C., and J. A. Buswell. 1982. An Investigation into the bacterial aetiology of “black patch necrosis” in Dover sole, Solea solea L. J. Fish Dis. 5: 495–508.Google Scholar
  61. Chang, L. Y. E., J. L. Pate, and R. J. Betzig. 1984. Isolation and characterization of nonspreading mutants of the gliding bacterium Cytophaga johnsonae. J. Bacteriol. 159: 26–35.PubMedPubMedCentralGoogle Scholar
  62. Chang, W. T. H., and D. W. Thayer. 1975. The growth of Cytophaga on mesquite. Developm. Industr. Microbiol. 16: 456–464.Google Scholar
  63. Chang, W. T. H., and D. W. Thayer. 1977. The cellulase system of a Cytophaga species. Can. J. Microbiol. 23: 1285–1292.PubMedGoogle Scholar
  64. Charpentier, M. 1965. Étude de l’activité cellulolytique de Sporocytophaga myxococcoides. Ann. Inst. Pasteur 109: 771–797.Google Scholar
  65. Charpentier, M., and D. Robio. 1974. Dégradation de la cellulose par un microorganisme du sol: Sporocytophaga myxococcoides: Caractérisation d’une exoglucanase. C. R. Acad. Sc. Paris. 279: 863–866.Google Scholar
  66. Chen, C. R. L., H. Y. Chung, and G. H. Kou. 1982. Studies on the pathogenicity of Flexibacter columnaris-I. Effect of dissolved oxygen and ammonia on the pathogenicity, of Flexibacter columnaris to eel (Anguilla japonica). CAPD Fish. Series 8:1–7. Counc. Agricult. Plann. Devel., Rep. China, Taipei, Taiwan.Google Scholar
  67. Cho, Y., H. Shinano, and M. Akiba. 1984. Studies on the microbiological ecology of mackerel stored by the method of partial freezing-I. Changes in microflora and chemical compounds in mackerel stored by partial freezing. Bull. Faculty Fish. (Hokkaido Univ.) 35: 271–285.Google Scholar
  68. Chowdhury, B. R., and H. Wakabayashi. 1988. Effects of sodium, potassium, calcium and magnesium ions on Flexibacter columnaris infection in fish. Fish Pathol. 23: 237–241.Google Scholar
  69. Chowdhury, B. R., and H. Wakabayashi. 1989. A study on the mechanism of the bacterial competitive effects on Flexibacter columnaris infection: Effects of the time-lag between the exposures of fish to F. columnaris and its competitor. Fish Pathol. 24: 105–110.Google Scholar
  70. Christensen, P. J. 1973. Studies on soil and freshwater cytophagas. Ph.D. thesis, University of Alberta, Edmonton, Canada.Google Scholar
  71. Christensen, P. J. 1977a. The history biology, and taxonomy of the Cytophaga group. Can. J. Microbiol. 23: 1599–1653.PubMedGoogle Scholar
  72. Christensen, P. J. 1977b. Synonomy of Flavobacterium pectinovorum Dorey with Cytophaga johnsonae Stanier. Int. J. Syst. Bacteriol. 27: 122–132.Google Scholar
  73. Christensen, P. J. 1980. Description and taxonomic status of Cytophaga heparina (Payza and Korn) comb. nov. (Basionym: Flavobacterium heparinum Payza and Korn 1956). Int. J. Syst. Bacteriol. 30: 473–475.Google Scholar
  74. Christensen, P. J., and E D. Cook. 1978. Lysobacter, a new genus of nonfruiting gliding bacteria with a high base ratio. Int. J. Syst. Bacteriol. 28: 367–393.Google Scholar
  75. Christison, J., and S. M. Martin. 1971. Isolation and preliminary characteristics of an extracellular protease of Cytophaga sp. Can. J. Microbiol. 17: 1207–1216.PubMedGoogle Scholar
  76. Colgrove, D. J., and J. W. Wood. 1966. Occurrence and control of Chondrococcus columnaris as related to Fraser River sockeye salmon. Progress Report No. 15 of the International Pacific Salmon Fisheries Commission, New Westminster, British Columbia, Canada.Google Scholar
  77. Collins, M. D., H. N. Shah, A. S. McKee, and R. M. Kroppenstedt. 1982. Chemotaxonomy of the genus Capnocytophaga (Leadbetter, Holt & Socransky). J. Appl. Bacteriol. 52: 409–415.PubMedGoogle Scholar
  78. Collins, V. G. 1970. Recent studies of bacterial pathogens of freshwater fish. Water Treatm. Exam. 19: 3–31.Google Scholar
  79. Cooper, R., K. Bush, P. A. Principe, W. H. Trejo, J. S. Wells, and R. B. Sykes. 1983. Two new antibiotics produced by a Flexibacter sp. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. 36: 1252–1257.PubMedGoogle Scholar
  80. Couke, P., and J. P. Voets. 1967. The mineral requirements of Polyangium cellulosum. Zschr. Allg. Mikrobiol. 7: 175–182.Google Scholar
  81. Cousin, M. A. 1982. Presence and activity of psychrotrophic microorganisms in milk and dairy products: a review. J. Food Protect. 45: 172–207.Google Scholar
  82. Crawford, R. L., and W. W. Mohn. 1985. Microbiological removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb. Technol. 7: 617–620.Google Scholar
  83. Davis, H. S. 1921/1922. A new bacterial disease of fresh- water fishes. Bull. U. S. Bur. Fish. 38: 261–280.Google Scholar
  84. Davis, H. S. 1949. Cytophaga columnaris as a cause of fish epidemics. Transact. Am. Fish. Soc. 77: 102–104.Google Scholar
  85. Dawson, R. M. C., W. H. Elliott, and K. M. Jones: (ed.) 1969. Data for biochemical research, 2nd ed. Clarendon Press, Oxford.Google Scholar
  86. Dees, S. B., C. W. Moss, R. E. Weaver, and D. Hollis. 1979. Cellular fatty acid composition of Pseudomonas paucimobilis and groups IIk-2, Ve-1, and Ve-2. J. Clin. Microbiol. 10: 206–209.PubMedPubMedCentralGoogle Scholar
  87. Deufel, J. 1974. Wirkung von Mefarol auf Fische and den Erreger der bakteriellen Kiemenschwellung. Der Fischwirt. 24: 27–29.Google Scholar
  88. Dhundale, A. R., T. Furuichi, S. Inouye, and M. Inouye. 1985. Distribution of multicopy single-stranded DNA among myxobacteria and related species. J. Bacteriol. 164: 914–917.PubMedPubMedCentralGoogle Scholar
  89. Dietrich, C. P. 1969. Enzymatic degradation of heparin. Biochem. J. 111: 91–95.PubMedPubMedCentralGoogle Scholar
  90. Donderski, W. 1982. Studies on pectolytic bacteria in water and bottom sediments of two lakes of different trophy. Acta Microbiol. Pol. 31: 293–299.Google Scholar
  91. Donderski, W. 1983. Chitinolytic bacteria in water and bottom sediments of two lakes of different trophy. Acta Microbiol. Pol. 33: 163–170.Google Scholar
  92. Dorey, M. J. 1959. Some properties of a pectolytic soil flavobacterium. J. Gen. Microbiol. 20: 91–104.PubMedGoogle Scholar
  93. Dubos, R. 1928. The decomposition of cellulose by aerobic bacteria. J. Bacteriol. 15: 223–234.PubMedPubMedCentralGoogle Scholar
  94. Duckworth, M., and J. R. Turvey. 1969a. An extracellular agarase from a Cytophaga species. Biochem. J. 113: 139–142.PubMedPubMedCentralGoogle Scholar
  95. Dungan, C. E, R. A. Elston, and M. H. Schiewe. 1989. Evidence for colonization and destruction of hinge ligaments in cultured juvenile Pacific oysters (Crassostrea gigas) by Cytophaga-like bacteria. Appl. Environm. Microbiol. 55: 1128–1135.Google Scholar
  96. Duxbury, T., B. A. Humphrey, and K. C. Marshall. 1980. Continuous observations of bacterial gliding motility in a dialysis microchamber: The effects of inhibitors. Arch. Microbiol. 124: 169–175.Google Scholar
  97. Fâhraeus, G. 1947. Studies on the cellulose decomposition by Cytophaga. Symbolae Botanicae Upsalienses 9(2): 1128.Google Scholar
  98. Farkas, J., and J. Olâh. 1984. Occurrence, experimental infection and treatment of myxobacterial gill disease of carp. Symp. Biol. Hungarica (Budapest) 23: 55–61.Google Scholar
  99. Fautz, E., L. Grotjahn, and H. Reichenbach. 1981. Hydroxy fatty acids as valuable chemosystematic markers in gliding bacteria and flavobacteria, p. 127–133. In: H. Reichenbach and O. B. Weeks (ed.), the Flavobacterium-Cytophaga group. Verlag Chemie, Weinheim, Germany.Google Scholar
  100. Fautz, E., and H. Reichenbach. 1980. A simple test for flexirubin-type pigments. FEMS Microbiol. Lett. 8: 87–91.Google Scholar
  101. Fautz, E., G. Rosenfelder, and L. Grotjahn. 1979. Isobranched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J. Bacteriol. 140: 852–858.PubMedPubMedCentralGoogle Scholar
  102. Fijan, N. N. 1969. Antibiotic additives for the isolation of Chondrococcus columnaris from fish. Appl. Microbiol. 17: 333–334.PubMedPubMedCentralGoogle Scholar
  103. Fijan, N. N., and P. R. Voorhees. 1969. Drug sensitivity of Chondrococcus columnaris. Veterinarski Arhiv (Zagreb) 39: 259–267.Google Scholar
  104. Flaherty, D. K., E H. Deck, M. A. Hood, C. Liebert, F. Singleton, P. Winzenburger, K. Bishop, L. R. Smith, L. M. Bynum, and W. B. Witmer. 1984. A Cytophaga species endotoxin as a putative agent of occupation-related lung disease. Infect. Immun. 43: 213–216.PubMedPubMedCentralGoogle Scholar
  105. Follett, E. A. C., and D. M. Webley. 1965. An electron microscope study of the cell surface of Cytophaga johnsonii and some observations on related organisms. An-tonie van Leeuwenhoek 31: 361–382.Google Scholar
  106. Forlenza, S., and M. G. Newman. 1983. Capnocytophaga, p. 45–66. In: E. J. Bottone (ed.), Unusual microorganisms. Marcel Dekker, New York.Google Scholar
  107. Forlenza, S. W., M. G. Newman, A. L. Horikoshi, and U. Blachman. 1981. Antimicrobial susceptibility of Capnocytophaga. Antimicrob. Agents Chemother. 19: 144–146.PubMedPubMedCentralGoogle Scholar
  108. Forlenza, S. W., M. G. Newman, A. I. Lipsey, S. E. Siegel, and U. Blachman. 1980. Capnocytophaga sepsis: a newly recognized clinical entity in granulocytopenic patients. Lancet 1980: 567–568.Google Scholar
  109. Fox., D.L., and R. A. Lewin. 1963. A preliminary study of the carotenoids of some flexibacteria. Can. J. Microbiol. 9: 753–768.Google Scholar
  110. Fujihara, M. P., and F. P. Hungate 1972. Seasonal distribution of Chondrococcus columnaris infection in river fishes as determined by specific agglutinins. J. Fish. Res. Bd. Can. 29: 173–178.Google Scholar
  111. Fujihara, M. P., P. A. Olson, and R. E. Nakatani. 1971. Some factors in susceptibility of juvenile rainbow trout and chinook salmon to Chondrococcus columnaris. J. Fish. Res. Bd. Can. 28: 1739–1743.Google Scholar
  112. Fumarola, D., R. D. Laforgia, R. Monno, G. Miragliotta, and F Mangini. 1981. Endotoxin-like activity with Capnocytophaga gingivalis. IRCS Medical Sci. 9: 720.Google Scholar
  113. Garnjobst, L. 1945. Cytophaga columnaris (Davis) in pure culture: a myxobacterium pathogenic to fish. J. Bacteriol. 49: 113–128.Google Scholar
  114. Gennari, M., and S. Tomaselli. 1988. Changes in aerobic microflora of skin and gills of Mediterranean sardines (Sardinia pilchardus) during storage in ice. Int. J. Food Microbiol. 6: 341–347.PubMedGoogle Scholar
  115. Ghittion, P. 1972. Mortalità massiva per Malattia Branchiale Batterica (MBB) in cieche di anguilla europea (Anguilla anguilla). Riv. Ital. Piscic. Ittiop. 7: 83–85.Google Scholar
  116. Glaser, J., and J. L. Pate. 1973. Isolation and characterization of gliding motility mutants of Cytophaga columnaris. Arch. Mikrobiol. 93: 295–309.PubMedGoogle Scholar
  117. Godchaux, W., and E. R. Leadbetter. 1980. Capnocytophaga spp. contain sulfonolipids that are novel in prokaryotes. J. Bacteriol. 144: 592–602.Google Scholar
  118. Godchaux, W., and E. R. Leadbetter. 1983. Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J. Bacteriol. 153: 1238–1246.PubMedPubMedCentralGoogle Scholar
  119. Godchaux, W., and E. R. Leadbetter. 1984. Sulfonolipids of gliding bacteria. Structure of the N-acylaminosulfonates. J. Biol. Chem. 259: 2982–2990.PubMedGoogle Scholar
  120. Godchaux, W., and E. R. Leadbetter. 1988. Sulfonolipids are localized in the outer membrane of the gliding bacterium Cytophaga johnsonae. Arch. Microbiol. 150: 4247.Google Scholar
  121. Godden, G., and M. J. Penninckx. 1984. Identification and evolution of the cellulolytic microflora present during composting of cattle manure: On the role of actinomycetes sp. Ann. Microbiol. (Inst. Pasteur) 135B: 6978.Google Scholar
  122. Godwin, S. L., M. Fletcher, and R. R. Burchard. 1989. Interference reflection microscopic study of sites of association between gliding bacteria and glass substrata. J. Bacteriol. 171: 4589–4595.PubMedPubMedCentralGoogle Scholar
  123. Gräf, W. 1961. Anaerobe Myxobakterien, neue Mikroben in der menschlichen Mundhöhle. Arch. Hyg. Bakteriol. 145: 405–459.Google Scholar
  124. Gräf, W. 1962a. Über Wassermyxobakterien. Arch. Hyg. Bakteriol. 146: 114–125.Google Scholar
  125. Gräf, W. t962b. Die zytopahtogenen Eigenschaften der anaeroben Myxobakterien. Arch. Hyg. Bakteriol. 146: 481–491.Google Scholar
  126. Graf, W. 1962c. Die Pathogenität anaerober Myxobakterien (Sphaerocytophaga) im Tierversuch. Arch. Hyg. Bakteriol. 146: 492–500.Google Scholar
  127. Gräf, W., and H. Morhard. 1966. Antibiotikaempfindlichkeit von anaeroben Myxobakterien. Arch. Hyg. Bakteriol. 150: 135–139.PubMedGoogle Scholar
  128. Greaves, M. R, D. Vaughan, and D. M. Webley. 1970. The degradation of nucleic acids by Cytophaga johnsonii. J. Appl. Bacteriol. 33: 380–389.PubMedGoogle Scholar
  129. Guamis, B., T. Huerta, and E. Garay. 1987. SDS-PAGE study of milk proteolysis by selected psychrotrophs from raw milk. Milchwissensch. 42: 89–91.Google Scholar
  130. Glide, H. 1973. Untersuchungen über aerobe pektinzersetzende Bakterien in einem eutrophen See. Arch. Hydrobiol., Suppl. 42: 483–496.Google Scholar
  131. Gilde, H. 1980. Occurrence of cytophagas in sewage plants. Appl. Environm. Microbiol. 39: 756–763.Google Scholar
  132. Hansen, G. H., and J. A. Olafsen. 1989. Bacterial colonization of cod (Gadus morhua L.) and halibut (Hippoglossus hippoglossus) eggs in marine aquaculture. Appl. Environm. Microbiol. 55: 1435–1446.Google Scholar
  133. Hanson, L. A., and J. M. Grizzle. 1985. Nitrite-induced predisposition of channel catfish to bacterial diseases. Progr. Fish-Cult. 47: 98–101.Google Scholar
  134. Hanstveit, A. O., and J. Gokseyr. 1974. The pathway of glucose catabolism in Sporocytophaga myxococcoides. J. Gen. Microbiol. 81: 27–35.Google Scholar
  135. Hawkey, R. M., H. Malnick, S. Glover, N. Cook, and J. A. Watts. 1984. Capnocytophaga ochracea infection: two cases and a review of the published work. J. Clin. Pathol. 37: 1066–1070.Google Scholar
  136. Hayes, R. R. 1977. A taxonomic study of flavobacteria and related Gram-negative yellow pigmented rods. J. Appl. Bacteriol. 3: 345–367.Google Scholar
  137. Heo, G. J., H. Wakabayashi, and S. Watabe. 1990. Purification and characterization of pili from Flavobacterium branchiophila. Fish Pathol. 25: 21–27.Google Scholar
  138. Heyn, A. N. J. 1957. Bacteriological studies on cotton. Textile Res. J. 27: 591–603.Google Scholar
  139. Hida, T., S. Tsubotani, N. Katayama, H. Okazaki, and S. Harada. 1985. Formadicins, new monocyclic 0-lactam antibiotics of bacterial origin II. Isolation, characterization and structures. J. Antibiot. 38: 1128–1140.PubMedGoogle Scholar
  140. Hikida, M., H. Wakabayashi, S. Egusa, and K. Masumura. 1979. Flexibacter sp., a gliding bacterium pathogenic to some marine fishes in Japan. Bull. Jap. Soc. Sci. Fish. 45: 421–428.Google Scholar
  141. Hirsch, I. 1979. Beiträge zur Taxonomie der Cytophagales. Ph.D. thesis, Technical University Braunschweig, Germany.Google Scholar
  142. Hoeniger, J. F. M. 1985. Microbial decomposition of cellulose in acidifying lakes of south-central Ontario. Appl. Environm. Microbiol. 50: 315–322.Google Scholar
  143. Höfle, M. G. 1982. Glucose uptake of Cytophaga johnsonae studied in batch and chemostat culture. Arch. Microbiol. 133: 289–294.Google Scholar
  144. Höfle, M. G. 1983. Long-term changes in chemostat cultures of Cytophaga johnsonae. Appl. Environm. Microbiol. 46: 1045–1053.Google Scholar
  145. Höfle, M. G. 1984. Transient responses of glucose-limited cultures of Cytophaga johnsonae to nutrient excess and starvation. Appl. Environm. Microbiol. 47: 356–362.Google Scholar
  146. Holm-Hansen, O., and R. A. Lewin. 1965. Bound ornithine in certain flexibacteria and algae. Physiol. Plant. 18: 418–423.Google Scholar
  147. Holm-Hansen, O., R. Prasad, and R. A. Lewin. 1965. Occurrence of a-, e-diaminopimelic acid in algae and flexibacteria. Phycologia 5: 1–14.Google Scholar
  148. Holt, S. C., J. Doundowlakis, and B. J. Takas. 1979a. Phospholipid composition of gliding bacteria: Oral isolates of Capnocytophaga compared with Sporocytophaga. Infect. Immun. 26: 305–310.PubMedPubMedCentralGoogle Scholar
  149. Holt, S. C., G. Forcier, and B. J. Takacs. 1979b. Fatty acid composition of gliding bacteria: Oral isolates of Capnocytophaga compared with Sporocytophaga. Infect. Immunity 26: 298–304.Google Scholar
  150. Holt, S. C., and E. R. Leadbetter. 1967. Fine structure of Sporocytophaga myxococcoides. Arch. Mikrobiol. 57: 199–213.PubMedGoogle Scholar
  151. Holt, S. C., E. R. Leadbetter, and S. S. Socransky. 1979c. Capnocytophaga: new genus of Gram-negative gliding bacteria. II. Morphology and ultrastructure. Arch. Microbiol. 120: 231–238.Google Scholar
  152. Humphrey, B. A., and K. C. Marshall. 1980. Fragmentation of some gliding bacteria during the growth cycle. J. Appl. Bacteriol. 49: 281–289.Google Scholar
  153. Hutchinson, H. B., and J. Clayton. 1919. On the decomposition of cellulose by an aerobic organism (Spirochaeta cytophaga nov. sp.). J. Agricult. Sci. 9: 143–173.Google Scholar
  154. lizuka, T., K. Fujikawa, K. Ito, and S. Murai. 1987. The phospholipid components of bacteria related to periodontitis. J. Nihon Univ. Sch. Dent. 29: 189–195.Google Scholar
  155. Imschenezki, A. A. (also: Imshenetski). 1959. Mikrobiologie der Cellulose. Akademie Verlag, Berlin. [Translated from the Russian edition of 1953.]Google Scholar
  156. Imshenetski, A. A., and L. Solntseva. 1936. On aerobic cellulose-decomposing bacteria. [In Russian, with English summary.] Izvestiia Akademii Nauk SSSR. Bulletin de l’Académie des Sciences de l’URSS. Classe des Sciences Mathématique et Naturelles. Série Biologie: 1115–1172.Google Scholar
  157. Irschik, H., and H. Reichenbach. 1978. Intracellular location of flexirubins in Flexibacter elegans (Cytophagales). Biochim. Biophys. Acta 510: 1–10.PubMedGoogle Scholar
  158. Johns., R. B., and G. J. Perry. 1977. Lipids of the marine bacterium Flexibacter polymorphus. Arch. Microbiol. 114: 267–271.Google Scholar
  159. Johnson, J. L., and W. S. Chilton. 1966. Galactosamine glycan of Chondrococcus columnaris. Science 152: 1247–1248.PubMedGoogle Scholar
  160. Jooste, P. J. 1985. The taxonomy and significance of Flavobacterium-Cytophaga strains from dairy sources. Doctoral thesis, University of Bloemfontein, RSA.Google Scholar
  161. Jooste, P. J., T. J. Britz, and J. de Haast. 1985. A numerical taxonomic study of Flavobacterium-Cytophaga strains from dairy sources. J. Appt. Bacteriol. 59: 311–323.Google Scholar
  162. Joubert, J. J., and M. J. Pitout. 1985. A constitutive heparinase in a Flavobacterium sp. Experientia 41: 1541.Google Scholar
  163. Kadota, H. 1956. A study of the marine aerobic cellulose-decomposing bacteria. Memoirs of the College of Agriculture, Kyoto University, no. 74: 1–128.Google Scholar
  164. Kagermeier, A., and J. London. 1986. Identification and preliminary characterization of a lectinlike protein from Capnocytophaga gingivalis (emended). Infect. Immun. 51: 490–494.PubMedPubMedCentralGoogle Scholar
  165. Kapke, P. A., A. T. Brown, and T. T. Lillich. 1980. Carbon dioxide metabolism by Capnocytophaga ochracea: Identification, characterization, and regulation of phosphoenolpyruvate carboxykinase. Infect. Immun. 27: 756–766.PubMedPubMedCentralGoogle Scholar
  166. Katayama, N., Y. Nozaki, K. Okonogi, H. Ono, S. Harada, and H. Okazaki. 1985. Formadicins, new monocyclic ß-lactam antibiotics of bacterial origin I. Taxonomy, fermentation and biological activities. J. Antibiot. 38: 1117–1127.PubMedGoogle Scholar
  167. Kath, T. K. L. 1990. Untersuchungen zur natürlichen Verwandtschaft cellulosezersetzender Cytophaga-artiger Bakterien. Doctoral thesis, Technical University, Braunschweig, Germany.Google Scholar
  168. Kato, T., H. Hinoo, J. Shoji, K. Matsumoto, T. Tanimoto, T. Hattori, K. Hirooka, and E. Kondo. 1987. PB-5266 A, B and C, new monobactams. I. Taxonomy, fermentation and isolation. J. Antibiot. 40: 135–138.PubMedGoogle Scholar
  169. Kato, T., H. Hinoo, Y. Terui, J. Kikuchi, and J. Shoji. 1.988. The structures of katanosins A and B. J. Antibiot. 41: 719–725.Google Scholar
  170. Kato, T., H. Hinoo, Y. Terui, J. Nishikawa, Y. Nakagawa, Y. Ikenishi, and J. Shoji. 1987. PB-5266 A, B and C, new monobactams II. Physico-chemical properties and chemical structures. J. Antibiot. 40: 139–144.PubMedGoogle Scholar
  171. Kauri, T., and D. J. Kushner. 1985. Role of contact in bacterial degradation of cellulose. FEMS Microbiol. Ecol. 31: 301–306.Google Scholar
  172. Kawata, S., T. Takemura, K. Yokogawa, and S. Kotani. 1984. Isolation of bacteriolytic endopeptidase from a strain of Cytophaga and its application to preparation of hydrosoluble polysaccharide peptide from Staphylococcus epidermidis peptidoglycan. Agric. Biol. Chem. 48: 2253–2263.Google Scholar
  173. Kent, M. L., C. R Dungan, R. A. Elston, and R. A. Holt. 1988. Cytophaga sp. (Cytophagales) infection in seawater pen-reared Atlantic salmon Salmo salar. Dis. Aquat. Org. 4: 173–179.Google Scholar
  174. Kincheloe, J. W. 1962. The cultivation and drug sensitivity of myxobacteria isolated from diseased fish. The Progressive Fish-Culturist 24: 119–126.Google Scholar
  175. Kingsbury, D. T., and E. J. Ordal. 1966. Bacteriophage infecting the myxobacterium Chondrococcus columnaris. J. Bacteriol. 91: 1327–1332.PubMedPubMedCentralGoogle Scholar
  176. Kleinig, H., H. Reichenbach, N. Theobald, and H. Achenbach. 1974. Flexibacter elegans and Myxococcus fulvus: aerobic Gram-negative bacteria containing menaquinones as the only isoprenoid quinones. Arch. Microbiol. 101: 91–93.Google Scholar
  177. Kohl, W., H. Achenbach, and H. Reichenbach. 1983. The pigments of Brevibacterium linens: Aromatic carotenoids. Phytochem. 22: 207–210.Google Scholar
  178. Krzemieniewska, H. 1930. Le cycle évolutif de Spirochaeta cytophaga Hutchinson et Clayton. Acta Soc. Botan. Po-Ion. 7: 507–519.Google Scholar
  179. Krzemienieqska, H. 1933. Contribution à l’étude du genre Cytophaga (Winogradsky). Arch. Mikrobiol. 4: 394–408.Google Scholar
  180. Kuhrt, M., and J. L. Pate. 1973. Isolation and characterization of tubules and plasma membranes from Cytophaga columnaris. J. Bacteriol. 114: 1309–1318.PubMedPubMedCentralGoogle Scholar
  181. Kuo, S. C., H. Y. Chung, and G. H. Kou. 1980. Studies on identification and pathogenicity of the gliding bacteria in cultured fishes. CAPD Fish. Series 3:53–66. Counc. Agricult. Plann. Devel., Rep. China, Taipei, Taiwan.Google Scholar
  182. Kuo, S. C., H. Y. Chung, and G. H. Kou. 1981. Studies on artificial infection of the gliding bacteria in cultured fishes. Fish Pathol. 15: 309–314.Google Scholar
  183. Kurowski, W. M., and J. A. Dunleavy. 1976. Pectinase production by bacteria associated with improved preservative permeability in sitka spruce: synthesis and secretion of polygalacturonate lyase by Cytophaga johnsonii. J. Appl. Bacteriol. 41: 119–128.Google Scholar
  184. Kusuda, R., and H. Kimura. 1982. Characteristics of gliding bacterium isolated from cultured yellowtail Seriola guinqueradiata. Bull. Japan. Soc. Sci. Fish. 48: 1107–1112.Google Scholar
  185. Lapidus, I. R., and H. C. Berg. 1982. Gliding motility of Cytophaga sp. strain U67. J. Bacteriol. 151: 384–398.PubMedPubMedCentralGoogle Scholar
  186. Leadbetter, E. R. 1974. Cytophagales, p. 99–112. In R. E. Buchanan and N. E. Gibbons (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Williams & Wilkins, Baltimore.Google Scholar
  187. Leadbetter, E. R., S. C. Holt, and S. S. Socransky. 1979. Capnocytophaga: New genus of Gram-negative gliding bacteria. I. General characteristics, taxonomic considerations and significance. Arch. Microbiol. 122: 9–16.Google Scholar
  188. Lewin, R. A. 1969. A classification of flexibacteria. J. Gen. Microbiol. 58: 189–206.PubMedGoogle Scholar
  189. Lewin, R. A. 1970. Flexithrix dorotheae gen. et sp. nov. (Flexibacterales); and suggestions for reclassifying sheathed bacteria. Can. J. Microbiol. 16: 5411–515.Google Scholar
  190. Lewin, R. A., and D. M. Lounsbery. 1969. Isolation, cultivation and characterization of flexibacteria. J. Gen. Microbiol. 58: 145–170.PubMedGoogle Scholar
  191. Liao, C. H. 1989. Analysis of pectate lyases produced by soft rot bacteria associated with spoilage of vegetables. Appl. Environm. Microbiol. 55: 1677–1683.Google Scholar
  192. Liao, C. H., and J. M. Wells. 1986. Properties of Cytophaga johnsonae strains causing spoilage of fresh produce at food markets. Appl. Environm. Microbiol. 52: 1261–1265.Google Scholar
  193. Liebert, C., M. A. Hood, F. H. Deck, K. Bishop, and D. K. Flaherty. 1984. Isolation and characterization of a new Cytophaga species implicated in work-related lung disease. Appl. Environm. Microbiol. 48: 936–943.Google Scholar
  194. Liewes, E. W., R. H. van Dam, M. G. Vos-Maas, and R. Bootsma. 1982. Presence of antigen sensitized leukocytes in carp (Cyprinus carpio L.) following bath immunization against Flexibacter columnaris. Vet. Immunol. Immunopathol. 3: 603–609.PubMedGoogle Scholar
  195. Liston, J. 1960. The bacterial flora of fish caught in the Pacific. J. Appl. Bacteriol. 23: 469–470.Google Scholar
  196. London, J., R. Celesk, and P. Kolenbrander. 1982. Physiological and ecological properties of the oral Gram-negative gliding bacteria capable of attaching to hydroxyapatite, p. 76–85. In: R. F. Genco and S. E. Mergenhagen (ed.), Host-parasite interactions in periodontal disease. Am. Soc. Microbiol., Washington, DC.Google Scholar
  197. Lund, B. M. 1969. Properties of some pectolytic, yellow pigmented, Gram-negative bacteria isolated from fresh cauliflowers. J. Appl. Bacteriol. 32: 60–67.PubMedGoogle Scholar
  198. Lundin, S. J. 1968. A bacterial factor capable of solubilizing cholinesterase from plaice body muscle. Acta Chem. Scand. 22: 2519–2528.Google Scholar
  199. Lundin, S. J., and A. Bovallius. 1966. The solubilization of a cholinesterase from plaice muscle by bacteria. Acta Chem. Scand. 20: 395–402.Google Scholar
  200. Mandel, M., and E. R. Leadbetter. 1965. Deoxyribonucleic acid base composition of myxobacteria. J. Bacteriol. 90: 1795–1796.PubMedPubMedCentralGoogle Scholar
  201. Mandel, M., and R. A. Lewin. 1969. Deoxyribonucleic acid base composition of flexibacteria. J. Gen. Microbiol. 58: 171–178.PubMedGoogle Scholar
  202. Martin, H. H., H. J. Preusser, and J. P. Verma. 1968. Über die Oberflächenstruktur von Myxobakterien II. Anionische Heteropolysaccharide als Baustoffe der Schleimhülle von Cytophaga hutchinsonii und Sporocytophaga myxococcoides. Arch. Mikrobiol. 62: 72–84.PubMedGoogle Scholar
  203. Martin, S. M., and V. So. 1969. Solubilization of autoclaved feathers and wool by myxobacteria. Can. J. Microbiol. 15: 1393–1397.PubMedGoogle Scholar
  204. Mayer, H., and H. Reichenbach. 1978. Restriction endonucleases: General survey procedure and survey of gliding bacteria. J. Bacteriol. 136: 708–713.PubMedPubMedCentralGoogle Scholar
  205. Mehra, I. J., G. M. Warke, and S. A. Dhala. 1967. Effect of zinc salts on Cytophaga spp. Ind. J. Microbiol. 7: 75–78.Google Scholar
  206. Moss, C. W., and S. B. Dees. 1978. Cellular fatty acids of Flavobacterium meningosepticum and Flavobacterium species group IIb. J. Clin. Microbiol. 8: 772–774.PubMedPubMedCentralGoogle Scholar
  207. Mulbry, W. W., J. S. Karns, P. C. Kearney, J. O. Nelson, C. S. McDaniel, and J. R. Wild. 1986. Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by Southern hybridization with opd from Pseudomonas diminuta. Appl. Environm. Microbiol. 51: 926–930.Google Scholar
  208. Murayama, Y., K. Muranishi, H. Okada, K. Kato, S. Kotani, H. Takada, M. Tsujimoto, A. Kawasaki, and T. Ogawa. 1982. Immunological activities of Capnocytophaga cellular components. Infect. Immun. 36: 876–884.PubMedPubMedCentralGoogle Scholar
  209. Nakamura, M., and J. Slots. 1982. Aminopeptidase activity of Capnocytophaga. J. Periodont. Res. 17: 597–603.PubMedGoogle Scholar
  210. Negoro, S., and H. Okada. 1982. Physical map of nylon oligomer degradative plasmid pOAD2 harbored in Flavobacterium sp. KI72. Agric. Biol. Chem. 46: 745–750.Google Scholar
  211. Newman, M. G., S. S. Socransky, E. D. Savitt, D. A. Propas, and A. Crawford. 1976. Studies of the microbiology of periodontosis. J. Periodontol. 47: 373–379.PubMedGoogle Scholar
  212. Ordal, E. J., and R. R. Rucker. 1944. Pathogenic myxobacteria. Proc. Soc. Exptl. Biol. Med. 56: 15–18.Google Scholar
  213. Osmundsväg, K., and J. Gokseyr. 1975. Cellulases from Sporocytophaga myxococcoides. Eur. J. Biochem. 57: 405–409.PubMedGoogle Scholar
  214. Ostland, V. E., H. W. Ferguson, and R. M. W. Stevenson. 1989. Case report: bacterial gill disease in goldfish Carassias auratus. Dis. Aquat. Org. 6: 179–184.Google Scholar
  215. Owen, R. J., and J. J. S. Snell. 1976. Deoxyribonucleic acid reassociation in the classification of flavobacteria. J. Gen. Microbiol. 93: 89–102.PubMedGoogle Scholar
  216. Oyaizu, H., and K. Komagata. 1981. Chemotaxonomic and phenotypic characterization of the strains of species in the Flavobacterium-Cytophaga complex. J. Gen. Appl. Microbiol. 27: 57–107.Google Scholar
  217. Oyaizu, H., K. Komagata, A. Amemura, and T. Harada. 1982. A succinoglycan-decomposing bacterium, Cytophaga arvensicola sp. nov. J. Gen. Appl. Microbiol. 28: 369–388.Google Scholar
  218. Pacha, R. E. 168. Characteristics of Cytophaga psychrophila (Borg) isolated during outbreaks of bacterial cold-water disease. Appl. Microbiol. 16: 97–101.Google Scholar
  219. Pacha, R. E., and E. J. Ordal. 1967. Histopathology of experimental columnaris disease in young salmon. J. Comparative Pathol. 77: 419–423.Google Scholar
  220. Pacha, R. E., and E. J. Ordal. 1970. Myxobacterial diseases of salmonids, p. 243–257. In: S. F. Snieszko (ed.), A symposium on diseases of fishes and shellfishes. Am. Fish. Soc., Special Publ. no. 5, Washington, DC.Google Scholar
  221. Pacha, R. E., and S. Porter. 1968. Characteristics of myxobacteria isolated from the surface of freshwater fish. Appl. Microbiol. 16: 1901–1906.PubMedPubMedCentralGoogle Scholar
  222. Paerregaard, A., and E. Gutschick. 1987. Capnocytophaga bacteremia complicating premature delivery by cesarean section. Eur. J. Clin. Microbiol. 6: 580–581.Google Scholar
  223. Paster, B. J., W. Ludwig, W. G. Weisburg, E. Stackebrandt, R. B. Hespell, C. M. Hahn, H. Reichenbach, K. O. Stetter, and C. R. Woese. 1985. A phylogenetic grouping of the bacteroides, cytophagas, and certain flavobacteria. System. Appl. Microbiol. 6: 34–42.Google Scholar
  224. Pate, J. L. 1985. Gliding motility in Cytophaga. Microbiol. Sciences 2: 289–295.Google Scholar
  225. Pate, J. L., and L. Y. E. Chang. 1979. Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Current Microbiol. 2: 59–64.Google Scholar
  226. Pate, J. L., J. L. Johnson, and E. J. Ordal. 1967. The fine structure of Chondrococcus columnaris II. Structure and formation of rhapidosomes. J. Cell Biol. 35: 15–35.PubMedPubMedCentralGoogle Scholar
  227. Pate, J. L., and E. J. Ordal. 1967a. The fine structure of Chondrococcus columnaris I. Structure and formation of mesosomes. J. Cell Biol. 35: 1–13.PubMedPubMedCentralGoogle Scholar
  228. Pate, J. L., and E. J. Ordal. 1967b. The fine structure of Chondrococcus columnaris III. The surface layers of Chondrococcus columnaris J. Cell Biol. 35: 37–51.PubMedPubMedCentralGoogle Scholar
  229. Pate, J. L., S. J. Petzold, and L. Y. E. Chang. 1979. Phages for the gliding bacterium Cytophaga johnsonae that infect only motile cells. Current Microbiol. 2: 257–262.Google Scholar
  230. Payza, A. N., and E. D. Korn. 1956a. The degradation of heparin by bacterial enzymes. J. Biol. Chem. 223: 853–864.PubMedGoogle Scholar
  231. Payza, A. N., and E. D. Korn. 1956b. Bacterial degradation of heparin. Nature 177: 227–232.Google Scholar
  232. Perry, L. B. 1973. Gliding motility in some nonspreading flexibacteria. J. Appl. Bacteriol. 36: 227–232.PubMedGoogle Scholar
  233. Pichinoty, R, J. Bigliardi-Rouvier, M. Mandel, B. Greenway, G. Méténier, and J. L. Garcia. 1976. The isolation and properties of a denitrifying bacterium of the genus Flavobacterium. Antonie van Leeuwenhoek 42: 349–354.PubMedGoogle Scholar
  234. Poirier, T. P., and S. C. Holt. 1983a. Acid and alkaline phosphatases of Capnocytophaga species. I. Production and cytological localization of the enzymes. Can. J. Microbiol. 29: 1350–1360.Google Scholar
  235. Poirier, T. R, and S. C. Holt. 1983b. Acid and alkaline phosphatases of Capnocytophaga species. II. Isolation, purification, and characterization of the enzymes from Capnocytophaga ochracea. Can. J. Microbiol. 29: 1361–1368.PubMedGoogle Scholar
  236. Poirier, T. R, and S. C. Holt. 1983c. Acid and alkaline phosphatases of Capnocytophaga species. III. The relationship of the enzymes to the cell wall. Can. J. Microbiol. 29: 1369–1381.PubMedGoogle Scholar
  237. Poos, J. C., R R. Turner, D. White, G. D. Simon, K. Bacon, and C. T. Russell. 1972. Growth, cell division, and fragmentation in a species of Flexibacter. J. Bacteriol. 112: 1387–1395.PubMedPubMedCentralGoogle Scholar
  238. Porter, D., S. Y. Newell, and W. L. Lingle. 1989. Tunneling bacteria in decaying leaves of a seagrass. Aquat. Bot. 35: 395–401.Google Scholar
  239. Pringsheim, E. G. 1951. The Vitreoscillaceae: a family of colorless, gliding, filamentous organisms. J. Gen. Microbiol. 5: 124–149.PubMedGoogle Scholar
  240. Pyle, S. W., and E. B. Shotts. 1981. DNA homology studies of selected flexibacteria associated with fish disease. Can. J. Fish. Aquat. Sci. 38: 146–151.Google Scholar
  241. Reichardt, W. 1974. Ecophysiology of some aquatic bacteria from the Flavobacterium-Cytophaga group. Zbl. Bakteriol. 1. Abt. Orig., Reihe A 227: 85–93.Google Scholar
  242. Reichardt, W., B. Gunn, and R. R. Colwell. 1983. Ecology and taxonomy of chitinoclastic Cytophaga and related chitin-degrading bacteria isolated from an estuary. Microb. Ecol. 9: 273–294.PubMedGoogle Scholar
  243. Reichardt, W., and R. Y. Morita. 1982a. Influence of ternperature adaptation on glucose metabolism in a psychrotrophic strain of Cytophaga johnsonae. Appl. Environm. Microbiol. 44: 1282–1288.Google Scholar
  244. Reichardt, W., and R. Y. Morita. 1982b. Survival stages of a psychrotrophic Cytophaga johnsonae strain. Can. J. Microbiol. 28: 841–850.Google Scholar
  245. Reichenbach, H. 1988. Gliding bacteria in biotechnology. p. 673–696. In. H. J. Rehm and G. Reed (ed.), Biotechnology, vol. 6b. VCH Verlagsges., Weinheim, Germany.Google Scholar
  246. Reichenbach, H. 1989. Flexibacter, p. 2061–2071: In: J. Staley (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins, Baltimore.Google Scholar
  247. Reichenbach, H., K. Gerth, H. Irschik, B. Kunze, G. Höfle, H. Augustiniak, R. Jansen, T. Kemmer, W. Kohl, H. Steinmetz, and W. Trowitzsch. 1984. Results of a screening for antibiotics with gliding bacteria. Third Eur. Congr. Biotechnol., München, vol. 1:15–21. Verlag Chemie, Weinheim, Germany.Google Scholar
  248. Reichenbach, H., H. Kleinig, and H. Achenbach. 1974. The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch. Microbiol. 101: 131–144.Google Scholar
  249. Reichenbach, H., W. Kohl, and H. Achenbach. 1981. The flexirubin-type pigments, chemosystematically useful compounds, p. 101–108. In: H. Reichenbach and O. B. Weeks (ed.), The Flavobacterium-Cytophaga group. Verlag Chemie, Weinheim, GermanyGoogle Scholar
  250. Reichenbach, H., W. Kohl, A. Böttger-Vetter, and H. Achenbach. 1980. Flexirubin-type pigments in Flavobacterium. Arch. Microbiol. 126: 291–293.Google Scholar
  251. Reichenbach, H., W. Ludwig, and E. Stackebrandt. 1986. Lack of relationship between gliding cyanobacteria and filamentous gliding heterotrophic eubacteria: Comparison of 16S rRNA catalogues of Spirulina, Saprospira, Vitreoscilla, Leucothrix and Herpetosiphon. Arch. Microbiol. 145: 391–395.Google Scholar
  252. Reichenbach, H., and O. B. Weeks. (ed.). 1981. The Flavobacterium-Cytophaga group. Verlag Chemie, Weinheim, Germany.Google Scholar
  253. Richter, C. A., and J. L. Pate. 1988. Temperate phages and bacteriocins of the gliding bacterium Cytophaga johnsonae. J. Gen. Microbiol. 134: 253–262.PubMedGoogle Scholar
  254. Ridgway, H.F. 1977a. Source of energy for gliding motility in Flexibacter polymorphus: Effects of metabolic and respiratory inhibitors on gliding movement. J. Bacteriol. 131: 544–556.PubMedPubMedCentralGoogle Scholar
  255. Ridgway, H.F. 1977b. Ultrastructural characterization of goblet-shaped particles from the cell wall of Flexibacter polymorphus. Can. J. Microbiol. 23: 1201–1213.PubMedGoogle Scholar
  256. Ridgway, H.F., and R. A. Lewin. 1973. Goblet shaped subunits from the wall of a marine gliding microbe. J. Gen. Microbiol. 79: 119–128.Google Scholar
  257. Ridgway, H.F., and R. A. Lewin. 1983. Subunit composition of goblet-shaped particles from the cell wall of Flexibacter polymorphus. Can. J. Microbiol. 29: 1689–1693.PubMedGoogle Scholar
  258. Ridgway, H.F., R. M. Wagner, W. T. Dawsey, and R. A. Lewin. 1975. Fine structure of the cell envelope layers of Flexibacter polymorphus. Can. J. Microbiol. 21: 1733–1750.PubMedGoogle Scholar
  259. Rivière, J. 1961. Activité cellulolytique des bactéries aérobies du sol. I. Isolement et purification. Ann. Agron. 12: 385–398.Google Scholar
  260. Rivière, J. 196lb. Activité cellulolytique des bactéries aérobies due sol. II. Action des facteurs due milieu sur la production de cellulases bactériennes. Ann. Agron. 12: 399–424.Google Scholar
  261. Rosenfelder, G., O. Luderitz, and O. Westphal. 1974. Composition of lipopolysaccharides from Myxococcus fulvus and other fruiting and non-fruiting myxobacteria. Eur. J. Biochem. 44: 411–420.PubMedGoogle Scholar
  262. Rucker, R. R., B. J. Earp, and E. J. Ordal. 1953. Infectious diseases of Pacific salmon. Transact. Am. Fish. Soc. 83: 297–312.Google Scholar
  263. Ruschke, R. 1968. Die Bedeutung von Wassermyxobakterien für den Abbau organischen Materials. Mitt. Internat. Verein. Limnol. 14: 164–167.Google Scholar
  264. Ruschke, R., and K. Köhn. 170. Untersuchungen zum Abbau kondensierter Phosphate aus Waschmiteln durch Sporocytophaga cauliformis un Pseudomonas fluorescens. Zbl. Bakteriol., 2. Abt. 124: 81–90.Google Scholar
  265. Ruschke, R., and M. Rath. 1966. Sporocytophaga cauliformis Knorr and Graf, eine Myxobakterienart mit großer Bedeutung für den Abbau organischen Materials. Arch. Hydrobiol., Suppl. 28: 377–402.Google Scholar
  266. Saito, A., I. Takazoe, and K. Okuda. 1988. Comparison of hemagglutinating activity, adsorption to saliva-treated hydroxyapatite, and cell surface hydrophobicity of Gram-negative periodontopathic bacteria. Bull. Tokyo Dent. Coll. 29: 51–57.Google Scholar
  267. Sandholm, L., K. Mahlberg, H. Jousimies-Somer. 1988. Phospholipase AZ: a possible virulence factor of Capnocytophaga ochracea. Oral Microbiol. Immunol. 3: 18–21.Google Scholar
  268. Sanfilippo, A., and R. A. Lewin. 1970. Preservation of viable flexibacteria at low temperatures. Can. J. Microbiol. 16: 441–444.PubMedGoogle Scholar
  269. Sangkhobol, V., and V. B. D. Skerman. 1981. Chitinophaga, a new genus of chitinolytic myxobacteria. Int. J. System. Bacteriol. 31: 285–293.Google Scholar
  270. Sarwar, G., S. Matayoshi, and H. Oda. 1987. Purification of a K-carrageenase from marine Cytophaga species. Microbiol. Immunol. 31: 869–877.PubMedGoogle Scholar
  271. Shewan, J. M. 1971. The microbiology of fish and fishery products-a progress report. J. Appl. Bacteriol. 34: 299–315.PubMedGoogle Scholar
  272. Shewan, J. M., and T. A. McMeekin. 1983. Taxonomy (and ecology) of Flavobacterium and related genera. Annu. Rev. Microbiol. 37: 233–252.PubMedGoogle Scholar
  273. Shieh, H. S. 1980. Studies on the nutrition of a fish pathogen, Flexibacter columnaris. Microbios Lett. 13: 129–133.Google Scholar
  274. Shiigi, S. M., R. R. Capwell, K. H. Grabstein, and R. I. Mishell. 1977. Sera and the in vivo induction of immune responses III. Adjuvant obtained from gliding bacteria with properties distinct from gliding bacteria with properties distinct from enteric bacterial lipopolysaccharide. J. Immunol. 119: 679–684.Google Scholar
  275. Shklair, I. L., and S. A. Rails. 1988. Periodontopathic microorganisms in the rice rat (Oryzomys palustris). Microbios 55: 25–31.PubMedGoogle Scholar
  276. Shlaes, D. M., M. J. Dul, and P. I. Lerner. 1982. Capnocytophaga bacteremia in the compromised host. Am. J. Clin. Pathol. 77: 359–361.Google Scholar
  277. Shoji, J., H. Hinoo, K. Matsumoto, T. Hattori, T. Yoshida, S. Matsuura, and E. Kondo. 1988. Isolation and characterization of katanosins A and B. J. Antibiot. 41: 713–718.PubMedGoogle Scholar
  278. Shoji„ J., T. Kato, R. Sakazaki, W. Nagata, Y. Terui, Y. Nakagawa, M. Shiro, K. Matsumoto, T. Hattori, T. Yoshida, and E. Kondo. 1984. Chitinovorins A, B and C, novel ß-lactam antibiotics of bacterial origin. J. Antibiot. 37: 1486–1490.Google Scholar
  279. Shurin, S. B., S. S. Socransky, E. Sweeney, and T. P. Stossel. 1979. A neutrophil disorder induced by Capnocytophaga, a dental microorganism. New Engl. J. Med. 301: 849–854.Google Scholar
  280. Sijpesteijn, A. K., and G. Fâhraeus. 1949. Adaptation of Sporocytophaga myxococcoides to sugars. J. Gen. Microbiol. 3: 224–235.PubMedGoogle Scholar
  281. Simon, G. D., and D. White. 1971. Growth and morphological characteristics of a species of Flexibacter. Arch. Mikrobiol. 78: 1–16.PubMedGoogle Scholar
  282. Singh, P. D., J. H. Johnson, P. C. Ward, J. S. Wells, W. H. Trejo, and R. B. Stykes. 1983. SQ 28,332, a new monobactam produced by a Flexibacter sp. Taxonomy, fermentation, isolation, structure determination and biological properties. J. Antibiot. 36: 1245–1251.PubMedGoogle Scholar
  283. Singh, P. D., P. C. Ward, J. S. Wells, C. M. Ricca, W. H. Trejo, P. A. Principe, and R. B. Sykes. 1982. Bacterial production of deacetoxycephalosporin. C. J. Antibiot. 35: 1397–1399.Google Scholar
  284. Singh, P. D., M. G. Young, J. H. Johnson, C. M. Cimarusti, and R. B. Sykes. 1984. Bacterial production of 7-formamidocephalosporins. Isolation and structure determination. J. Antibiot. 37: 773–780.PubMedGoogle Scholar
  285. Snieszko, S. F., 1953. Therapy of bacterial fish diseases. Transact. Americ. Fish. Soc. 83: 313–330.Google Scholar
  286. Snieszko, S. E, 1974. The effects of environmental stress on outbreaks of infectious diseases of fishes. J. Fish Biol. 6: 197–208.Google Scholar
  287. Snieszko, S. E, and G. L. Bullock. 1976. Columnaris disease of fishes, Fish disease leaflet no. 45. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC.Google Scholar
  288. Solntseva, L. I. 1940. Biology of myxobacteria. I. Myxococcus. Mikrobiologiya 9: 217–232 (In Russian, with English summary).Google Scholar
  289. Song, Y. L., J. L. Fryer, and J. S. Rohovec. 1988a. Comparison of six media for the cultivation of Flexibacter columnaris. Fish Pathol. 23: 91–94.Google Scholar
  290. Song, Y. L., J. L. Fryer, and J. S. Rohovec. 1988b. Comparison of gliding bacteria isolated from fish in North America and other areas of the Pacific rim. Fish Pathol. 23: 197–202.Google Scholar
  291. Soriano, S. 1945. El nuevo orden Flexibacterales y la clasificación de los órdenes de las bacterial. Revistaa Argentina de Agronomia (Buenos Aires) 12: 120–140.Google Scholar
  292. Soriano, S. 1947. The Flexibacterales and their systematic position. Antonie van Leeuwenhoek 12: 215–222.PubMedGoogle Scholar
  293. Spangenberg, R. 1975. Orientierende Untersuchungen über das Vorkommen von Myxobakterien bei der Kiemennekrose des Karpfens. Ztschr. Binnenfisch. DDR 22: 121–127.Google Scholar
  294. Speyer, E. 1953. Untersuchungen an Sporocytophaga myxococcoides (Stanier 1940). Arch. Mikrobiol. 18: 245–272.PubMedGoogle Scholar
  295. Stanier, R. Y. 1941. Studies on marine agar digesting bacteria. J. Bacteriol. 42: 527–558.PubMedPubMedCentralGoogle Scholar
  296. Stanier, R. Y. 1942. The Cytophaga group: A contribution to the biology of myxobacteria. Bacteriol. Rev. 6: 143–196.PubMedPubMedCentralGoogle Scholar
  297. Stanier, R. Y. 1947. Studies on nonfruiting myxobacteria. I. Cytophaga johnsonae n. sp., a chitin-decomposing myxobacterium. J. Bacteriol. 53: 297–315.PubMedCentralGoogle Scholar
  298. Stapp, C., and H. Bortels. 1934. Mikrobiologische Untersuchungen über die Zersetzung von Waldstreu. Zbl. Bakteriol. 2. Abt. 90: 28–66.Google Scholar
  299. Starliper, C. E., E. B. Shotts, T. C. Hsu, and W. B. Schill. 1988. Genetic relatedness of some Gram-negative yellow pigmented bacteria from fishes and aquatic environments. Microbios 56: 181–198.Google Scholar
  300. Stevens, R. H., and B. F. Hammond. 1988. The comparative cytotoxicity of a periodontal bacteria. J. Periodontol. 59: 741–749.PubMedGoogle Scholar
  301. Stroh], W. R. 1979. Ultrastructure of Cytophaga johnsonae and C. aquatilis by freeze-etching. J. Gen. Microbiol. 112: 261–268.Google Scholar
  302. Strohl, W. R., and L. R. Tait. 1978. Cytophaga aquatilis sp. nov., a facultative anaerobe isolated from the gills of freshwater fish. Int. J. Syst. Bacteriol. 28: 293–303.Google Scholar
  303. Stucki, G., and M. Alexander. 1987. Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl. Environm. Microbiol. 53: 292–297.Google Scholar
  304. Stürzenhofecker, P. 1966. Bakteriophagen bei Wassermyxobakterien. Arch. Hyg. Bakteriol. 150: 153–157.PubMedGoogle Scholar
  305. Suido, H., M. Nakamura, P. A. Mashimo, J. J. Zambon, and R. J. Genco. 1986. Arylaminopeptidase activities of oral bacteria. J. Dent. Res. 65: 1335–1340.PubMedGoogle Scholar
  306. Sundarraj, N., and J. V. Bhat. 1971. Endo-polygalacturonate lyase of Cytophaga johnsonii. Arch. Mikrobiol. 77: 155164.Google Scholar
  307. Sundarraj, N., and J. V. Bhat. 1972 Breakdown of chitin by Cytophaga johnsonii. Arch. Mikrobiol. 85: 159–167.PubMedGoogle Scholar
  308. Sutherland, I. W., and M. L. Smith. 1973. The lipopolysaccharides of fruiting and non-fruiting myxobacteria. J. Gen. Microbiol. 74: 259–266.Google Scholar
  309. Tchan, Y. T., and J. Giuntini. 1950. Action antagoniste chez les Cytophagaceae. Ann. Inst. Pasteur 50: 415–416.Google Scholar
  310. Turvey, J. R., and J. Christison. 1967. The hydrolysis of algal galactans by enzymes from a Cytophaga species. Biochem. J. 105: 311–316.PubMedPubMedCentralGoogle Scholar
  311. Umezawa, H., Y. Okami, S. Kurasawa, T. Ohnuki, M. Ishizuka, T. Takeuchi, T. Shiio, and Y. Yugari. 1983. Marinactan, antitumor polysaccharide produced by marine bacteria. J. Antibiot. 36: 471–477.PubMedGoogle Scholar
  312. Usinger, W. R., G. C. Clark, E. Gottschalk, S. Holt, and R. I. Mishell. 1985. Characteristics of bacterium GB-2, a presumptive Cytophaga species with novel immunoregulatory properties. Current Microbiol. 12: 203–208.Google Scholar
  313. Valentine, A. F., and G. B. Chapman. 1966. Fine structure and host-virus relationship of a marine bacterium and its bacteriophage. J. Bacteriol. 92: 1535–1554.PubMedPubMedCentralGoogle Scholar
  314. Vance, I., C. M. Topham, S. L. Blayden, and J. Tampion. 1980. Extracellular cellulase production by Sporocytophaga myxococcoides NCIB 8639. J. Gen. Microbiol. 117: 235–241.Google Scholar
  315. van der Meulen, H. J., and W. Harder. 1975. Production and characterization of the agarase of Cytophaga flevensis. Antonie van Leeuwenhoek 41: 431–447.PubMedGoogle Scholar
  316. van der Meulen, H. J., and W. Harder. 1976. Characterization of the neoagarotetra-ase and neoagarobiase of Cytophaga flevensis. Antonie van Leeuwenhoek 42: 81–94.Google Scholar
  317. van der Meulen, H. J., W. Harder, and H Veldkamp. 1974. Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie van Leeuwenhoek 40: 329–346.PubMedGoogle Scholar
  318. Veldkamp, H. 1955. A study of the aerobic decomposition of chitin by microorganisms. Mededelingen van de Landbouwhogeschool te Wageningen 55: 127–174.Google Scholar
  319. Veldkamp, H. 1961. A study of two marine agar-decomposing, facultatively anaerobic myxobacteria. J. Gen. Microbiol. 26: 331–342.PubMedGoogle Scholar
  320. Veldkamp, H. 1965. Isolation of Cytophaga and Sporocytophaga. Zbl. Bakteriol. 1. Abt., Suppl. 1: 81–90.Google Scholar
  321. Verma, J. P. 1970. The amino acid sequence of mureins of Cytophaga hutchinsonii and Sporocytophaga myxococcoides. Proc. Ind. Nat. Sci. Acad. 36 B: 364–368.Google Scholar
  322. Verma, J. P., and H. H. Martin. 1967b. Chemistry and ultrastructure of surface layers in primitive myxobacteria: Cytophaga hutchinsonii and Sporocytophaga myxococcoides. Folia Microbiol. 12: 248–254.Google Scholar
  323. Verma, J. P., and H. H. Martin. 1967. Über die Oberflächenstruktur von Myxobakterien I. Chemie und Morphologie der Zellwände von Cytophaga hutchinsonii und Sporocytophaga myxococcoides. Arch. Mikrobiol. 59: 355–380.PubMedGoogle Scholar
  324. Wakabayashi, H., and S. Egusa. 1974. Characteristics of myxobacteria associated with some freshwater fish diseases in Japan. Bull. Jap. Soc. Sci. Fish. 40: 751–757.Google Scholar
  325. Wakabayashi, H., M. Hikida, and K. Masumura. 1986. Flexibacter maritimus sp. nov., a pathogen of marine fishes. Int. J. Syst. Bacteriol. 36: 396–398.Google Scholar
  326. Wakabayashi, H., G. J. Huh, and N. Kimura. 1989. Flavobacterium branchiophila sp. nov., a causative agent of bacterial gill disease of freshwater fishes. Int. J. Syst. Bacteriol. 39: 213–216.Google Scholar
  327. Wakabayashi, H., K. Kira, and S. Egusa. 1970a. Studies on columnaris disease of pond-cultured eels. I. Characteristics and pathogenicity of Chondrococcus columnaris isolated from pond-cultured eels [In Japanese, with English summary.] Bull. Jap. Soc. Scientif. Fish. 36: 147–154.Google Scholar
  328. Wakabayashi, H., K. Kira, and S. Egusa. 1970b. Studies on columnaris disease of pond-cultured eels. II. The relation between gill disease and Chondrococcus columnaris [In Japanese, with English summary.] Bull. Jap. Soc. Scientif. Fish. 36: 678–685.Google Scholar
  329. Walker, E., and F. L. Warren. 1938. Decomposition of cellulose by Cytophaga. I. Biochem. J. 32: 31–43.Google Scholar
  330. Walker, R. W. 1969. Cis-l1-hexadecenoic acid from Cytophaga hutchinsonii lipids. Lipids 4: 15–18.PubMedGoogle Scholar
  331. Ward, O.P., and W. M. Fogarty. 1974. Polygalacturonate lyase production by Bacillus subtilis and Flavobacterium pectionvorum. Appl. Microbiol. 27: 346–350.PubMedPubMedCentralGoogle Scholar
  332. Warke, G. M., and S. A. Dhala. 1968. Use of inhibitors for selective isolation and enumeration of cytophagas from natural substrates. J. Gen. Microbiol. 51: 43–48.PubMedGoogle Scholar
  333. Webley, D. M., E. A. C. Follett, and I. R Taylor. 1967. A comparison of the lytic action of Cytophaga johnsonii on a eubacterium and a yeast. Antonie van Leeuwenhoek 33: 159–165.PubMedGoogle Scholar
  334. Weeks, O. B. 1974. Flavobacterium, p. 357–364. In: R. E. Buchanan and N. E. Gibbons (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Williams & Wilkins, Baltimore.Google Scholar
  335. Weeks, O. B. 1981. Preliminary studies of the pigments of Flavobacterium breve NCTC 11099 and Flavobacterium odoratum NCTC 11036, p. 109–114. In: H. Reichenbach and O. B. Weeks (ed.), The Flavobacterium Cytophaga group. Verlag Chemie, Weinheim, Germany.Google Scholar
  336. Weiss, E. I., J. London, P. E. Kolenbrander, A. S. Kagermeier, and R. N. Andersen. 1987. Characterization of lectinlike surface components on Capnocytophaga ochracea ATCC 33596 that mediate coaggregation with Gram-positive oral bacteria. Infect. Immun. 55: 1198–1202.PubMedPubMedCentralGoogle Scholar
  337. White, R. H. 1984. Biosynthesis of the sulfonolipid 2- amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. J. Bacteriol. 159: 42–46.PubMedPubMedCentralGoogle Scholar
  338. Willets, A. 1983. Bacterial metabolism of aliphatic diols. Function of alcohol oxidases and catalase in Flavobacterium sp. NCIB 11171. J. Gen. Microbiol. 129: 997–1004.Google Scholar
  339. Williams, B. L., and B. F. Hammond. 1979. Capnocytophaga: new genus of Gram-negative gliding bacteria. IV. DNA base composition and sequence homology. Arch. Microbiol. 122: 35–39.Google Scholar
  340. Williams, B. L., D. Hollis, and L. V. Holdeman. 1979. Synonymy of strains of Center for Disease Control group DF-1 with species of Capnocytophaga. J. Clin. Microbiol. 10: 550–556.PubMedPubMedCentralGoogle Scholar
  341. Winogradsky, S. N. 1929. Études sur la microbiologie du sol. Sur la dégradation de la cellulose dans le sol. Ann. Inst. Pasteur 43: 549–633.Google Scholar
  342. Woese, C. R., E. Stackebrandt, T. J. Macke, and G. Fox. 1985. A phylogenetic definition of the major eubacterial taxa. System. Appl. Microbiol. 6: 143–151.Google Scholar
  343. Wolkin, R. H., and J. L. Pate. 1984. Translocation of motile cells of the gliding bacterium Cytophaga johnsonii depends on a surface component that may be modified by sugars. J. Gen. Microbiol. 130: 2651–2669.Google Scholar
  344. Wolkin, R. H., and J. L. Pate. 1986. Phage adsorption and cell adherence are motile-dependent characteristics of the gliding bacterium Cytophaga johnsonii. J. Gen. Microbiol. 132: 355–367.Google Scholar
  345. Yabuuchi, E., T. Kaneko, I. Yano, C. W. Moss, and N. Miyoshi. 1983. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucosenonfermenting Gram-negative rods in CDC groups IIK2- and IIb. Int. J. Syst. Bacteriol. 33: 580–598.Google Scholar
  346. Yamamoto, T. 1967. Presence of rhapidosomes in various species of bacteria and their morphological characteristics. J. Bacteriol. 94: 1746–1756.PubMedPubMedCentralGoogle Scholar
  347. Yano, I., S. Imaizumi, I. Tomiyasu, and E. Yabuuchi. 1983. Separation and analysis of free ceramides containing 2-hydroxy fatty acids in Sphingobacterium species. FEMS Microbiol. Lett. 20: 449–453.Google Scholar
  348. Yano, I., Y. Ohno, M. Masui, K. Kato, E. Yabuuchi, and A. Ohyama. 1976. Occurrence of 2-and 3-hydroxy fatty acids in high concentrations in the extractable and bound lipids of Flavobacterium meningosepticum and Flavobacterium IIb. Lipids 11: 685–688.PubMedGoogle Scholar
  349. ZoBell, C. E., and H. C. Upham. 1944. A list of marine bacteria including descriptions of sixty new species. Bull. Scripps Inst. Oceanogr. Univ. Calif. (Technical Series) 5: 239–292.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Hans Reichenbach

There are no affiliations available

Personalised recommendations