The Prokaryotes pp 3379-3389 | Cite as

The Genus Desulfuromonas and Other Gram-Negative Sulfur-Reducing Eubacteria

  • Friedrich Widdel
  • Norbert Pfennig


The ability to gain energy for growth by dissimilatory reduction of elemental sulfur in a respiratory type of metabolism (with the formation of sulfide) is found in several genera of eubacteria and archaebacteria. H2 or organic substrates, mainly simple organic acids, serve as electron donors. There are, however, other organisms, including some eukaryotes, that reduce sulfur in a nonrespiratory manner; in this case, sulfur acts merely as a hydrogen sink in a “facilitated fermentation,” or is reduced in a by-reaction without obvious bioenergetic significance. An overview and details of physiology and biochemistry of sulfur reduction are given in Chapter 24.


Electron Donor Electron Acceptor Green Sulfur Bacterium Closed Bottle Single Polar Flagellum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bache, R., R M. H. Kroneck, H. Merkle, and H. Beinert. 1983. A survey of EPR-detectable components in sulfur-reducing bacteria. Biochim. Biophys. Acta 722: 417–426.CrossRefGoogle Scholar
  2. Balashova, V. V. 1985. The use of molecular sulfur as an agent oxidizing hydrogen by the facultative anaerobic Pseudomonas strain. Mikrobiologiya (USSR) 54: 324326.Google Scholar
  3. Balashova, V. V., and G. A. Zavarzin. 1979. Anaerobic reduction of ferric iron by hydrogen bacteria. Mikrobiologiya (USSR) 48: 773–778.Google Scholar
  4. Baumann, P., M. J. Gauthier, and L. Baumann. 1984. Genus Alteromonas, p. 343–352. In: N. R. Krieg and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams Wilkins, Baltimore.Google Scholar
  5. Biebl, H., and N. Pfennig. 1977. Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch. Microbiol. 112: 115–117.PubMedCrossRefGoogle Scholar
  6. Biebl, H., and N. Pfennig. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9–16.CrossRefGoogle Scholar
  7. Bonch-Osmolovskaya, T. G. Sokolova, N. A. Kostrikina, and G. A. Zavarzin. 1990. Desulfurella acetivorans gen. nov., sp. nov.-a new thermophilic sulfur-reducing eu-bacterium. Arch. Microbiol. 153: 151–155.Google Scholar
  8. Collins, M. D., and E Widdel. 1986. Respiratory quinones of sulfate-reducing and sulfur-reducing bacteria: a systematic investigation. Syst. Appl. Microbiol. 8: 8–18.CrossRefGoogle Scholar
  9. Fowler, V. J., E Widdel, N. Pfennig, C. R. Woese, and E. Stackebrandt. 1986. Phylogenetic relationships of sulfate-and sulfur-reducing eubacteria. Syst. Appl. Microbiol. 8: 32–41.CrossRefGoogle Scholar
  10. He, S. -H., D. V. DerVartanian, and J. LeGall. 1986. Isolation of fumarate reductase from Desulfovibrio multispirans, a sulfate reducing bacterium. Biochem. Biophys. Res. Commun. 135: 1000–1007.PubMedCrossRefGoogle Scholar
  11. Laanbroek, H. J., W. Kingma, and H. Veldkamp. 1977. Isolation of an aspartate-fermenting free-living Campylobacter species. FEMS Microbiol. Lett. 1: 99–102.Google Scholar
  12. Laanbroek, H. J., L. J. Stal, and H. Veldkamp. 1978. Utilization of hydrogen and formate by Campylobacter species under aerobic and anaerobic conditions. Arch. Microbiol. 119: 99–102.PubMedCrossRefGoogle Scholar
  13. Lau, P. R, B. DeBrunner-Vossbrinck, B. Dunn, K. Miotto, M. T. MacDonell, D. M. Rollins, C. J. Pillidge, R. B. Hespell, R. R. Colwell, M. L. Sogin, and G. E. Fox. 1987. Phylogenetic diversity and position of the genus Campylobacter. Syst. Appl. Microbiol. 9: 231–238.PubMedCrossRefGoogle Scholar
  14. Loveley, D. R., E. J. P. Phillips, and D. J. Lonergan. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55: 700–706.Google Scholar
  15. Macy, J. M., I. Schröder, R. K. Thauer, and A. Kröger. 1986. Growth of Wolinella succinogenes on H2S plus fumar-ate and on formate plus sulfur as energy sources. Arch. Microbiol. 144: 147–150.CrossRefGoogle Scholar
  16. Myers, C. R., and K. H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240: 1319–1321.PubMedCrossRefGoogle Scholar
  17. Palleroni, N. J. 1984. Genus I. Pseudomonas, p. 141–199. In: N. R. Krieg and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams Wilkins, Baltimore.Google Scholar
  18. Pfennig, N., and H. Biebl. 1976. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing acetate-oxidizing bacterium. Arch. Microbiol. 110: 3–12.Google Scholar
  19. Pfennig, N., and H. Biebl. 1981. The dissimilatory sulfur-reducing bacteria, p. 941–947. In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes, vol. 1. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  20. Postgate, J. R. 1984a. The sulfate-reducing bacteria, 2nd ed. Cambridge University Press, Cambridge.Google Scholar
  21. Postgate, J. R., 1984b. Genus Desulfovibrio, p. 666–672. In: N. R. Krieg and H. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams Wilkins, Baltimore.Google Scholar
  22. Probst, I., M. Bruschi, N. Pfennig, and J. LeGall. 1977. Cytochrome c-551.5 (c,) from Desulfuromonas acetoxidans. Biochim. Biophys. Acta 460: 58–64.PubMedCrossRefGoogle Scholar
  23. Romaniuk, R J., B. Zoltowska, T. J. Trust, D. J. Lane, G. J. Olsen, N. R. Pace, and D. A. Stahl. 1987. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J. Bacteriol. 169: 2137–2141.Google Scholar
  24. Rozanova, E. R, T. N. Nazina, and A. S. Galushko. 1988. A new genus of sulfate-reducing bacteria and the description of its new species, Desulfomicrobium apsheronum gen. nov., sp. nov. Mikrobiologiya (USSR) 57: 634–641.Google Scholar
  25. Schleifer, K. H., and W. Ludwig. 1989. Phylogenetic relationships among bacteria, p. 103–117. In: B. Fernholm, K. Bremer, and H. Jörnvall (ed.), The hierarchy of life. Elsevier Science Publishing B.V., Amsterdam.Google Scholar
  26. Schmitz, R. M., E. A. Bonch-Osmolovskaya, and R. K. Thauer. 1990. Different mechanisms of acetate activation in Desulfurella acetivorans and Desulfuromonas acetoxidans. Arch. Microbiol. 154: 274–279.CrossRefGoogle Scholar
  27. Stackebrandt, E., U. Wehmeyer, and B. Schink. 1989. The phylogenetic status of Pelobacter acidigallici,. Pelobacter venetianus, and Pelobacter carbinolicus. Syst. Appl. Microbiol. 11: 257–260.CrossRefGoogle Scholar
  28. Wolfe, R. S., and N. Pfennig. 1977. Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl. Environ. Microbiol. 33: 427–433.PubMedPubMedCentralGoogle Scholar
  29. Wolin, M. J., E. A. Wolin, and N. J. Jacobs. 1961. Cytochrome-producing anaerobic vibrio, Vibrio succinogenes, sp. n. J. Bacteriol. 81: 911–917.PubMedPubMedCentralGoogle Scholar
  30. Yoshinari, T. 1980. N2O reduction by Vibrio succinogenes. Appl. Environ. Microbiol. 39: 81–84.Google Scholar
  31. Zinder, S. H., and T. D. Brock. 1978. Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Arch. Microbiol. 116: 35–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Friedrich Widdel
  • Norbert Pfennig

There are no affiliations available

Personalised recommendations