The Prokaryotes pp 3352-3378 | Cite as

Gram-Negative Mesophilic Sulfate-Reducing Bacteria

  • Friedrich Widdel
  • Friedhelm Bak


An overview of the sulfate-reduction process is given in Chapter 24. Most types of dissimilatory sulfate-reducing bacteria that have been isolated from nature and described so far are mesophilic, nonsporeforming anaerobes. They are members of the delta subdivision of the proteobacteria. The earliest known representative of this category is Desulfovibrio (Beijerinck, 1895). Further investigations have revealed a great morphological and nutritional diversity within this group. Various cell types have been described including cocci; oval or long straight rods; more or less curved rods or spirilla; cell packets; cells with gas vesicles; and gliding, multicellular filaments (Figs. 7–9). Electron donors used for sulfate reduction include H2, alcohols, fatty acids, other monocarboxylic acids, dicarboxylic acids, some amino acids, a few sugars, phenyl-substituted acids, and some other aromatic compounds (Table 2). Even long-chain alkanes can be anaerobically oxidized by a particular type of sulfate-reducing bacterium (Aeckersberg et al., 1991). The utilization of polysaccharides or polypeptides, such as has been observed with the extremely thermophilic sulfate-reducing archaebacterium Archaeoglobus (Stetter, 1988; Stetter et al., 1987), has not been reported for mesophilic sulfate reducers.


Head Space Desulfovibrio Desulfuricans Desulfovibrio Species Sodium Thioglycollate Cell Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aeckersberg, E, E. Bak, and E. Widdel. 1991. Anaerobic oxidation of saturated hydrocarbons to CO, by a new type of sulfate-reducing bacterium. Arch. Microbiol. (in press).Google Scholar
  2. Badziong, W., R. K. Thauer, and J. G. Zeikus. 1978. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Microbiol. 116: 41–49.PubMedCrossRefGoogle Scholar
  3. Badziong, W., B. Ditter, and R. K. Thauer. 1979. Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy source. Arch. Microbiol. 123: 301–305.CrossRefGoogle Scholar
  4. Bak, F., and N. Pfennig. 1987. Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch. Microbiol. 147: 184–189.CrossRefGoogle Scholar
  5. Bak, F., and N. Pfennig. 1991a. Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiol. Ecol. (in press).Google Scholar
  6. Bak, E, and N. Pfennig. 199lb. Sulfate-reducing bacteria in littoral sediment of Lake Constance. FEMS Microbiol. Ecol. (in press).Google Scholar
  7. Bak, F., and F. Widdel. 1986a. Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. Arch. Microbiol. 146: 170–176.CrossRefGoogle Scholar
  8. Bak, E, and E. Widdel. 1986b. Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch. Microbiol. 146: 177–180.CrossRefGoogle Scholar
  9. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260–296.PubMedPubMedCentralGoogle Scholar
  10. Beerens, H., and H. Romond. 1977. Sulfate-reducing anaerobic bacteria in human feces. Am. J. Clin. Nutr. 30: 1770–1776.PubMedGoogle Scholar
  11. Beijerinck, W. M. 1895. Ueber Spirillum desulfuricans als Ursache von Sulfatreduction. Zentralbl. Bakteriol. 2. Abt. 1:1–9, 49–59, 104–114Google Scholar
  12. Boon, J. J., J. W. De Leeuw, G. J. v.d. Hoek, and J. H. Vos-jan. 1977. Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched ß-hydroxy acids in Desulfovibrio desulfuricans. J. Bacteriol. 129: 1183–1191.PubMedPubMedCentralGoogle Scholar
  13. Brandis, A., and R. K. Thauer. 1981. Growth of Desulfovibrio species on hydrogen and sulfate as sole energy source. J. Gen. Microbiol. 126: 249–252.Google Scholar
  14. Bryant, M. P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25: 1324–1328.PubMedGoogle Scholar
  15. Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with HZ utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33: 1162–1169.PubMedPubMedCentralGoogle Scholar
  16. Brysch, K., C. Schneider, G. Fuchs, and E. Widdel. 1987. Lithoautotmphic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch. Microbiol. 148: 264–274.CrossRefGoogle Scholar
  17. Collins, M. D., and E. Widdel. 1986. Respiratory quinones of sulfate-reducing and sulfur-reducing bacteria: a systematic investigation. Syst. Appl. Microbiol. 8: 8–18.CrossRefGoogle Scholar
  18. Cord-Ruwisch, R., W. Kleinitz, and E Widdel. 1986. Sulfatreduzierende Bakterien in einem Erdölfeld-Arten and Wachstumsbedingungen. Erdöl, Erdgas, Kohle, 102: 281–289.Google Scholar
  19. Cord-Ruwisch, R., W. Kleinitz, and E Widdel. 1987. Sulfate-reducing bacteria and their activities in oil production. J. Petrol. Technol., January 1987: 97–106.Google Scholar
  20. Cypionka, H., F. Widdel, and N. Pfennig. 1985. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Ecol. 31: 39–45.Google Scholar
  21. Dawson, R. M. C., D. C. Elliott, W. H. Elliott, and K. M. Jones. 1986. Data for biochemical research, p. 116. Clarendon Press, Oxford.Google Scholar
  22. Devereux, R., M. Delaney, F. Widdel, and D. A. Stahl. 1989. Natural relationships among sulfate-reducing eubacteria. J. Bacteriol. 171: 6689–6695.PubMedPubMedCentralGoogle Scholar
  23. Devereux, R., S.-H. He, C. L. Doyle, S. Orkland, D. S. Stahl, J. LeGall, and W. B. Whitman. 1990. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family J Bacteriol. 172: 3609–3619.Google Scholar
  24. DeWeerd, K. A., L. Mandelco, R. S. Tanner, C. R. Woese, and J. M. Suflita. 1990. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154: 23–30.Google Scholar
  25. Dolfing, J., and J. M. Tiedje. 1987. Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch. Microbiol. 149: 102–105.PubMedCrossRefGoogle Scholar
  26. Dowling, N. J. E., E. Widdel, and D. C. White. 1986. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria. J. Gen. Microbiol. 132: 1815–1825.Google Scholar
  27. Esnault, G., P. Caumette, and J. L. Garcia. 1988. Characterization of Desulfovibrio giganteus sp. nov., a sulfate-reducing bacterium isolated from a brackish coastal lagoon. Syst. Appl. Microbiol. 10: 147–151.CrossRefGoogle Scholar
  28. Fiebig, K., and G. Gottschalk, 1983. Methanogenesis from choline by a coculture of Desulfovibrio sp. and Methanosarcina barkeri. Appl. Environ. Microbiol. 45: 161–168.PubMedPubMedCentralGoogle Scholar
  29. Folkerts, M., U. Ney, H. Kneifel, E. Stackebrandt, E. G. Witte, H. Förstel, S. M. Schoberth, and H. Sahm, 1989. Desulfovibrio furfuralis sp. nov., a furfural degrading strictly anaerobic bacterium. Syst. Appl. Microbiol. 11: 161–169.Google Scholar
  30. Fowler, V. J., E Widdel, N. Pfennig, C. R. Woese, and E. Stackebrandt, 1986. Phylogenetic relationships of sulfate-and sulfur-reducing eubacteria. Syst. Appl. Microbiol. 8: 32–41.CrossRefGoogle Scholar
  31. Gibson, G. R., R. J. Parkes, and R. A. Herbert. 1987. Evaluation of viable counting procedures for the enumeration of sulfate-reducing bacteria in estuarine sediments. J. Microbiol. Meth. 7: 201–210.CrossRefGoogle Scholar
  32. Gogotova, G. I., and M. B. Vainshtein 1989. Description of sulfate-reducing bacterium Desulfobacterium macestii sp. nov. capable of autotrophic growth. Mikrobiologiya (USSR) 57: 76–80.Google Scholar
  33. Greenwood, N. N., and A. Earnshaw. 1984. Chemistry of the elements, p. 852. Pergamon Press, Oxford.Google Scholar
  34. Hermann, M., K. M. Noll, and R. S. Wolfe, R. S. 1986. Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere. Appl. Environ. Microbiol. 51: 1124–1126.PubMedPubMedCentralGoogle Scholar
  35. HHeunisch, G. W. 1976. Stoichiometry of reaction of sulfites with hydrogen sulfide. Inorg. Chem. 16: 1411–1413.CrossRefGoogle Scholar
  36. Hemann, A. E, E. Wiberg, and N. Wiberg. 1985. Lehrbuch der anorganischen Chemie, p. 518. Walter de Gruyter, Berlin.Google Scholar
  37. Howard, B. H., and R. E. Hungate. 1976. Desulfovibrio of the sheep rumen. Appl. Environ. Microbiol. 32: 598–602.Google Scholar
  38. Imhoff-Stuckle, D., and N. Pfennig. 1983. Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch. Microbiol. 136: 194–198.CrossRefGoogle Scholar
  39. Jacq, V. A., and Y. Dommergues. 1971. Sulfato-réduction spermatosphérique. Ann. Inst. Pasteur (Paris) 121: 199–206.Google Scholar
  40. Jones, H. E. 1971. Sulfate-reducing bacterium with unusual morphology and pigment content. J. Bacteriol. 106: 339–346.PubMedPubMedCentralGoogle Scholar
  41. Jorgensen B. B. 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41: 7–17.CrossRefGoogle Scholar
  42. Jorgensen B. B., and E Bak. 1991. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol. (in press).Google Scholar
  43. Laanbroek, H. J., T. Abee, and I. L. Voogd. 1982. Alcohol conversion by Desulfobulus propionicus strain Lind-horst in the presence and absence of sulfate and hydrogen. Arch. Microbiol. 133: 178–184.CrossRefGoogle Scholar
  44. Lapage, S. P., J. E. Shelton, and T. G. Mitchell. 1971. Media for the maintenance and preservation of bacteria, p. 1133. In: J. R. Norris, and D. W. Ribbons (ed.), Methods in microbiology, vol. 3A. Academic Press, London.Google Scholar
  45. Lee, J.-P., C.-S. Yi, J. LeGall, and H. D. Peck, Jr. 1973. Isolation of a new pigment, desulforubidin, from Desulfovibirio desulfuricans. J. Bacteriol. 115: 453–455.PubMedPubMedCentralGoogle Scholar
  46. Loach, P. A. 1970. Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies, p. J33–J40. In: H. A. Sober (ed.) Handbook of biochemistry, 2nd ed. The Chemical Rubber Co., Cleveland.Google Scholar
  47. Moore, W. E. C., J. L. Johnson, and L. V. Holdeman. 1976. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int. J. Syst. Bacteriol. 26: 238–252.CrossRefGoogle Scholar
  48. Nanninga, H. J., and J. C. Gottschal. 1987. Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl. Environ. Microbiol. 53: 802–809.PubMedPubMedCentralGoogle Scholar
  49. Nazina, T. N., A. B. Poltaraus, and E. P. Rozanova. 1987. Estimation of genetic relationship between rod-shaped asporogenic sulfate-reducing bacteria. Mikrobiologiya (USSR) 56: 845–848.Google Scholar
  50. Odom, J. M., and H. D. Peck, Jr. 1984. Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Annu. Rev. Microbiol. 38: 551–592.PubMedCrossRefGoogle Scholar
  51. Ollivier, B., R. Cord-Ruwisch, E. C. Hatchikian, and J. L. Garcia 1988. Characterization of Desulfovibrio fructosovorans sp. nov. Arch. Microbiol. 149: 447–450.CrossRefGoogle Scholar
  52. Pace, B., and L. L. Campbell. 1971. Homology of ribosomal ribonucleic acid of Desulfovibrio species with Desulfovibrio vulgaris. J. Bacteriol. 106: 717–719.PubMedPubMedCentralGoogle Scholar
  53. Pankhania, I. P., A. M. Spormann, and R. K. Thauer. 1988. Lactate conversion to acetate, CO, and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction. Arch. Microbiol. 150: 26–31.CrossRefGoogle Scholar
  54. Pfennig, N., and H. G. Trüper. 1981. Isolation of members of the families Chromatiaceae and Chlorobiaceae, p. 279–289. In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes, vol. I. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  55. Pfennig, N., E Widdel, and H. G. Trüper. 1981. The dissimilatory sulfate-reducing bacteria, p. 926–940. In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes, vol. I. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  56. Platen, H., A. Temmes, and B. Schink. 1990. Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov. Arch. Microbiol. 154: 355–361.PubMedGoogle Scholar
  57. Postgate, J. R. 1984a. The sulfate-reducing bacteria. Cambridge University Press, Cambridge, London.Google Scholar
  58. Postgate, J. R. 1984b. Genus Desulfovibrio, p. 666–672. In: N. R. Krieg, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore.Google Scholar
  59. Rozanova, E. R, T. N. Nazina, and A. S. Galushko. 1988. A new genus of sulfate-reducing bacteria and the description of its new species, Desulfomicrobium apsheronum gen. nov., sp. nov. Mikrobiologiya (USSR) 57: 634–641.Google Scholar
  60. Rozanova, E. P., and T. A. Pivovarova. 1988. Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974). Mikrobiologiya (USSR) 57: 102–106.Google Scholar
  61. Samain, E., H. C. Dubourguier, and G. Albanac. 1984. Isolation and characterization of Desulfobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst. Appl. Microbiol. 5: 391–401.CrossRefGoogle Scholar
  62. Schink, B. 1984. Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus, sp. nov. and evidence for propionate formation from CZ compounds. Arch. Microbiol. 137: 33–41.CrossRefGoogle Scholar
  63. Schink, B., D. R. Kremer, and T. A. Hansen, 1987. Pathway of propionate formation from ethanol in Pelobacter propionicus. Arch. Microbiol. 147: 321–327.CrossRefGoogle Scholar
  64. Schnell, S., E Bak, and N. Pfennig. 1989. Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini. Arch. Microbiol. 152: 556–563.PubMedCrossRefGoogle Scholar
  65. Shelton, D. R., and J. M. Tiedje. 1984. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48: 840–848.PubMedPubMedCentralGoogle Scholar
  66. Soimajärvi, J., M. Pursiainen, and J. Korhonen. 1978. Sulfate-reducing bacteria in paper machine waters and in suction roll perforations. Eur. J. Appl. Microbiol. Biotechnol. 5: 87–93.CrossRefGoogle Scholar
  67. Stackebrandt, E., U. Wehmeyer, and B. Schink. 1989. The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Syst. Appl. Microbiol. 11: 257–260.CrossRefGoogle Scholar
  68. Stams, A. J. M., D. R. Kremer, K. Nicolay, G. H. Weenk, and T. A. Hansen 1984. Pathway of propionate formation in Desulfobulbus propionicus. Arch. Microbiol. 139: 167–173.CrossRefGoogle Scholar
  69. Stetter, K. O. 1988. Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10: 171–173.Google Scholar
  70. Stetter, K. O., G. Lauerer, M. Thomm, and A. Neuner. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236: 822–824.PubMedCrossRefGoogle Scholar
  71. Szewzyk, R., and N. Pfennig. 1987. Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch. Microbiol. 147: 163–168.CrossRefGoogle Scholar
  72. Takai, Y., and T. Kamura. 1966. The mechanism of reduction in waterlogged paddy soil. Folia Microbiol. 11: 304–313.CrossRefGoogle Scholar
  73. Tanner, R. S. 1989. Monitoring sulfate-reducing bacteria: comparison of enumeration media. J. Microbiol. Meth. 10: 83–90.CrossRefGoogle Scholar
  74. Taylor, J., and R. J. Parkes. 1983. The cellular fatty acids of the sulfate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol. 129: 3303–3309.Google Scholar
  75. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180.PubMedPubMedCentralGoogle Scholar
  76. Ueki, A., and T. Suto. 1979. Cellular fatty acid composition of sulfate-reducing bacteria. J. Gen. Appl. Microbiol. 25: 185–196.CrossRefGoogle Scholar
  77. Veldkamp, H. 1970. Enrichment cultures of prokaryotic organisms, p. 305–361. In: J. R. Norris, and D. W. Ribbons (ed.), Methods in microbiology, vol. 3A. Academic Press, London.Google Scholar
  78. Watanabe, I., and C. Furusaka. 1980. Microbial ecology of flooded rice soils. Adv. Microbiol. Ecol. 4: 125–168.CrossRefGoogle Scholar
  79. Weast, R. C. 1989. Handbook of chemistry and physics, 70th ed. (p. D-154). CRC Press, Boca Rota, FL.Google Scholar
  80. Widdel, E 1980. Anaerober Abbau von Fettsäuren and Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral Thesis. University of Göttingen, Göttingen, GermanyGoogle Scholar
  81. Widdel, E. 1983. Methods for enrichment and pure culture isolation of filamentous gliding sulfate-reducing bacteria. Arch. Microbiol. 134: 282–285.CrossRefGoogle Scholar
  82. Widdel, E. 1987. New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov., Arch. Microbiol. 148: 286–291.Google Scholar
  83. Widdel, E 1988. Microbiology and ecology of sulfate-and sulfur-reducing bacteria, p. 469–585. In: A. J. B. Zehn-der (ed.), Biology of anaerobic microorganisms. John Wiley and Sons, New York.Google Scholar
  84. Widdel, E. 1989. Genus Desulfonema, p. 2128–2131. In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins, BaltimoreGoogle Scholar
  85. Widdel, E, G.-W. Kohring, and E. Mayer, 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol. 134: 286–294CrossRefGoogle Scholar
  86. Widdel, E, and N. Pfennig, 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395–400.PubMedCrossRefGoogle Scholar
  87. Widdel, E, and N. Pfennig, 1982. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch. Microbiol. 131: 360–365.CrossRefGoogle Scholar
  88. Widdel, E, and N. Pfennig, 1984. Dissimilatory sulfate-or sulfur-reducing bacteria, p. 663–679. In: N. R. Krieg, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore.Google Scholar
  89. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.PubMedPubMedCentralGoogle Scholar
  90. Zeikus, J. G., M. A. Dawson, T. E. Thompson, K. Ingvorsen, and E. C. Hatchikian, 1983. Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesufobacterium commune gen. nov. and sp. nov. J. Gen. Microbiol. 129: 1159–1169.Google Scholar
  91. Zellner, G., P. Messner, H. Kneifel, and J. Winter, 1989. Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester. Arch. Microbiol. 152: 329–334.Google Scholar
  92. Zellner, G., P. Vogel, H. Kneifel, and J. Winter, 1987. Anaerobic digestion of whey and whey permeate with suspended and immobilized complex and defined consortia. Appl. Microbiol. Biotechnol. 27: 306–314.Google Scholar
  93. Zellner, G., and J. Winter, 1987. Analysis of a highly efficient methanogenic consortium producing biogas from whey. Syst. Appl. Microbiol. 9: 284–292.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Friedrich Widdel
  • Friedhelm Bak

There are no affiliations available

Personalised recommendations