Advertisement

The Prokaryotes pp 3256-3275 | Cite as

The Genus Lysobacter

  • Hans Reichenbach

Abstract

The species classified in the genus Lysobacter are Gram-negative rods that move by gliding. The cells are slender and cylindrical, with rounded ends (Figs. 1 and 2). They typically measure 0.4−0.6 × 2−5 μm, but in the population there are also always long to very long (up to 70 μm) cells and filaments. The cell shape and the occurrence of long cells are both very characteristic for the genus. Lysobacter cells resemble the vegetative cells of certain myxobacteria, specifically of the genera Polyangium and Sorangium, with which the lysobacters were confused for many years. They also share with the myxobacteria a high GC content of their DNA of 65 to 70 mol%. Due to the gliding movements of the cells, the colonies of Lysobacter are spreading or swarming on solid media and may become very large and extremely thin (Figs. 3 and 4). Sometimes the organisms produce copious amounts of slime, and the colonies then become thick and deliquescent, but colonies with a wrinkled and dry surface also occur. Lysobacter colonies may be white or cream-colored but often they are greenish-yellow, purplish-red, or brown, although their color is often rather pale. Some strains produce an unpleasant odor reminiscent of certain pseudomonads or of pyridine. In agitated liquid cultures, the lysobacters grow as homogeneous cell suspensions, but, as with all gliding bacteria, the suspended cells are unable to translocate. The Lysobacter species live in soil, decaying organic matter, and fresh water, sometimes in large populations. Many strains are of considerable ecological and biotechnological interest as producers of exoenzymes and of antibiotics.

Keywords

Lytic Enzyme Yeast Agar Homogeneous Cell Suspension Lytic Bacterium Lysobacter Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahmad, S., B. Rightmire, and R. A. Jensen. 1986. Evolution of the regulatory isozymes of 3-deoxy-n-arabino-heptulosonate 7-phosphate synthase present in the Escherichia coli genealogy. J. Bacteriol. 165: 146–154.PubMedPubMedCentralGoogle Scholar
  2. Andrews, B. A., and J. A. Asenjo. 1984. Ex.ocellular synthesis of lytic enzyme complex: ß (1–3) glucanase, protease and mannanase in inducible and constitutive bacteria, p. 9–13. Third Eur. Congr. Biotechn., München, vol. 1. Verlag Chemie, Weinheim.Google Scholar
  3. Asenjo, J. A. 1980. Continuous isolation of yeast-lytic enzymes from Cytophaga, p. 49–55. In: H. H. Weetall, and G. P. Royer (ed.), Enzyme engineering, vol. 5. Plenum Press, New York.Google Scholar
  4. Asenjo, J. A., and P. Dunnill. 1981. The isolation of lytic enzymes from Cytophaga and their application to the rupture of yeast cells. Biotechnol. Bioengineer. 23: 1045–1056.Google Scholar
  5. Asenjo, J. A., P. Dunnill, and M. D. Lilly. 1981. Production of yeast-lytic enzymes by Cytophaga species in batch culture. Biotechnol. Bioengineer. 23: 97–109.Google Scholar
  6. Au, D. M., A. S. Kang, and D. J. Murphy. 1989. An immunologically related family of apolipoproteins associated with triacylglycerol storage in the cruciferae. Arch. Biochem. Biophys. 273: 516–526.PubMedGoogle Scholar
  7. Bachovkin, W. W. 1986. “N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine pro-teases: Evidence for a moving histidine mechanism. Biochem. 25: 7751–7759.Google Scholar
  8. Bachovkin, W. W., R. Kaiser, J. H. Richards, and J. D. Roberts. 1981. Catalytic mechanism of serine proteases: Reexamination of the pH dependence of the histidyl coupling constant in the catalytic triad of a-lytic protease. Proc. Natl. Acad. Sci. USA 78: 7323–7326.Google Scholar
  9. Bauer, C. A., G. D. Brayer, A. R. Sielecki, and M. N. G. James. 1981. Active site of a-lytic protease. Enzyme-substrate interactions. Eur. J. Biochem. 120: 289–294.PubMedGoogle Scholar
  10. Behki, R. M., and S. M. Lesley. 1972. Deoxyribonucleic acid degradation and the lethal effect by myxin in Escherichia coli. J. Bacteriol. 109: 250–261.PubMedPubMedCentralGoogle Scholar
  11. Boileau, G., N. Larivière, K. L. Hsi, N. G. Seidah, and M. Chrétien. 1982. Characterization of multiple forms of porcine anterior pituitary proopiomelanocortin amino-terminal glycopeptide. Biochem. 21: 5341–5346.Google Scholar
  12. Bone, R., D. Frank, C. A. Kettner, and D. A. Agard. 1989. Structural analysis of specificity: a-Lytic protease complexes with analogues of reaction intermediates. Biochem. 28: 7600–7609.Google Scholar
  13. Bone, R., A. B. Shenvi, C. A. Kettner, and D. A. Agard. 1987. Serine protease mechanism: Structure of an inhibitory complex of a-lytic protease and a tightly bound peptide boronic acid. Biochem. 26: 7609–7614.Google Scholar
  14. Bonner, D. P., J. O’Sullivan, S. K. Tanaka, J. M. Clark, and R. R. Whitney. 1988. Lysobactin, a novel antibacterial agent produced by Lysobacter sp. II. Biological properties. J. Antibiot. 41: 1745–1751.PubMedGoogle Scholar
  15. Brayer, G. D., L. T. J. Delbaere, and M. N. G. James. 1979. Molecular structure of the a-lytic protease from myxobacter 495 at 2.8 A resolution. J. Mol. Biol. 131: 743–775.PubMedGoogle Scholar
  16. Christensen, P. 1989. Order II. Lysobacterales Christensen and Cook 1978, p. 2082–2089. In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins, Baltimore.Google Scholar
  17. Christensen, P. J., and E D. Cook. 1972. The isolation and enumeration of cytophagas. Can. J. Microbiol. 18: 1933–1940.PubMedGoogle Scholar
  18. Christensen, P., and F. D. Cook. 1978. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int. J. Syst. Bacteriol. 28: 367–393.Google Scholar
  19. Clapin, D. E, and D. R. Whitaker. 1976. Production and antibiotic properties of myxosidin, an antibiotic of myxobacter 495. Proceed. Can. Fed. Biol. Soc. 19: 33.Google Scholar
  20. Clapin, D. F., and D. R. Whitaker. 1978. The structure of myxosidin A and B, antibiotics of myxobacter 495. Proceed. Can. Fed. Biol. Soc. 21: 29.Google Scholar
  21. Daft, M. J., S. McCord, and W. D. P. Stewart. 1973. The occurrence of blue-green algae and lytic bacteria at a waterworks in Scotland. Water Treatm. Examinat. 22: 114–124.Google Scholar
  22. Daft, M. J., S. B. McCord, and W. D. P. Stewart. 1975. Ecological studies on algal-lysing bacteria in fresh water. Freshwat. Biol. 5: 577–596.Google Scholar
  23. Daft, M. J., and W. D. P. Stewart. 1971. Bacterial pathogens of freshwater blue-green algae. New Phytol. 70: 819–829.Google Scholar
  24. Daft, M. J., and W. D. P. Stewart. 1973. Light and electron microscope observations on algal lysis by bacterium CP-1. New Phytol. 72: 799–808.Google Scholar
  25. Dhundale, A. R., T. Furuichi, S. Inouye, and M. Inouye. 1985. Distribution of multicopy single-stranded DNA among myxobacteria and related species. J. Bacteriol. 164: 914–917.PubMedPubMedCentralGoogle Scholar
  26. Drews, G. 1974. Mikrobiologisches Praktikum. Springer-Verlag, Berlin.Google Scholar
  27. Dworkin, M. 1969. Sensitivity of gliding bacteria to actinomycin D. J. Bacteriol. 98: 851–852.PubMedPubMedCentralGoogle Scholar
  28. Ensign, J. C., and R. S. Wolfe. 1965. Lysis of bacterial cell. walls by an enzyme isolated from a myxobacter. J. Bacteriol. 90: 395–402.PubMedPubMedCentralGoogle Scholar
  29. Ensign, J. C., and R. S. Wolfe. 1966. Characterization of a small proteolytic enzyme which lyses bacterial cell walls. J. Bacteriol. 91: 524–534.PubMedPubMedCentralGoogle Scholar
  30. Epstein, D. M., and R C. Wensink. 1988. The a-lytic protease gene of Lysobacter enzymogenes. J. Biol. Chem. 263: 16586–16590.PubMedGoogle Scholar
  31. Evans, J. R., E. J. Napier, and R. A. Fletton. 1978. G 14992, a new quinoline compound isolated from the fermentation broth of Cytophaga johnsonii. J. Antibiot. 31: 952–958.PubMedGoogle Scholar
  32. Fallowfield, H. J., and M. J. Daft. 1988. The extracellular release of dissolved organic carbon by freshwater cyanobacteria and the interaction with Lysobacter CP-1. Brit. Phycol. J. 23: 317–326.Google Scholar
  33. Fujinaga, M., L. T. J. Delbaere, G. D. Brayer, and M. N. G. James. 1985. Refined structure of a-lytic protease at 1.7 Â resolution. Analysis of hydrogen bonding and solvent structure. J. Mol. Biol. 183: 479–502.Google Scholar
  34. Ghuysen, J. M. 1968. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol. Rev. 32: 425–464.PubMedPubMedCentralGoogle Scholar
  35. Gillespie, D. C., and E D. Cook. 1965. Extracellular enzymes from strains of Sorangium. Can. J. Microbiol. 11: 109–118.PubMedGoogle Scholar
  36. Godchaux, W., and E. R. Leadbetter. 1983. Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J. Bacteriol. 153: 1238–1246.PubMedPubMedCentralGoogle Scholar
  37. Grunberg, E., J. Berger, G. Beskid, R. Cleeland, H. N. Prince, and E. Titsworth. 1967. Studies on the in vitro and in vivo chemotherapeutic properties of the antibiotic myxin. Chemotherapia 12: 272–281.Google Scholar
  38. Guntermann, U., I. Tan, and A. Hüttermann. 1975. Induction of a-glucosidase and synthesis during the cell cycle of myxobacter AL-1. J. Bacteriol. 124: 86–91.PubMedPubMedCentralGoogle Scholar
  39. Harada, S., S. Tsubotani, T. Hida, H. Ono, and H. Okazaki. 1986. Structure of lactivicin, an antibiotic having a new nucleus and similar biological activities to ß-lactam antibiotics. Tetrahedr. Lett. 27: 6229–6232.Google Scholar
  40. Harada, S., S. Tsubotani, T. Hida, K. Koyama, M. Kondo, and H. Ono. 1988. Chemistry of a new antibiotic: lactivicin. Tetrahedr. 44: 6589–6606.Google Scholar
  41. Harada, S., S. Tsubotani, H. Ono, and H. Okazaki. 1984. Cephabacins, new cephem antibiotics of bacterial origin II. Isolation and characterization. J. Antibiot. 37: 1536–1545.PubMedGoogle Scholar
  42. Harcke, E., E. von Massow, and H. Kühlwein. 1975. On the structure of the peptidoglycan of cell walls from Myxobacter AL-1 (Myxobacterales). Arch. Microbiol. 103: 251–257.PubMedGoogle Scholar
  43. Hartmann, W., I. Tan, A. Hüttermann, and H. Kühlwein. 1977. Studies on the cell cycle of Myxobacter AL-1 II. Activities of seven enzymes during the cell cycle. Arch. Microbiol. 114: 13–18.PubMedGoogle Scholar
  44. Hedges, A., and R. S. Wolfe. 1974. Extracellular enzyme from myxobacter AL-1 that exhibits both ß-1,4-glucanase and chitosanase activities. J. Bacteriol. 120: 844–853.PubMedPubMedCentralGoogle Scholar
  45. Hofsteenge, J., W. J. Weijer, P. A. Jekel, and J. J. Beintema. 1983. p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens 1. Completion of the elucidation of the primary structure. Eur. J. Biochem. 133: 91–108.Google Scholar
  46. Hsu, S. C., and J. L. Lockwood. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Microbiol. 29: 422–426.PubMedPubMedCentralGoogle Scholar
  47. Hunkapiller, M. W., S. H. Smallcombe, D. R. Whitaker, and J. H. Richards. 1973. Carbon nuclear magnetic resonance studies of the histidine residue in a-lytic protease. Implications for the catalytic mechanism of serine proteases. Biochem. 12: 4732–4743.Google Scholar
  48. Hunter, J. B., and J. A. Asenjo. 1987a. Kinetics of enzymatic lysis and disruption of yeast cells: I. Evaluation of two lytic systems with different properties. Biotechnol. Bioengineer. 30: 471–480.Google Scholar
  49. Hunter, J. B., and J. A. Asenjo. 1987b. Kinetics of enzymatic lysis and disruption of yeast cells: II. A simple model of lysic kinetics. Biotechnol. Bioengineer. 30: 481–490.Google Scholar
  50. Jackson, R. L., and G. R. Matsueda. 1970. Myxobacter AL-1 protease, p. 591–599. In: G. E. Perlmann, and L. Lorand (ed.), Methods in enzymology, vol. 19. Academic Press, New York.Google Scholar
  51. Jackson, R. L., and R. S. Wolfe. 1968. Composition, properties, and substrate specificities of myxobacter AL-1 protease. J. Biol. Chem. 243: 879–888.PubMedGoogle Scholar
  52. Jarvis, D., and J. L. Strominger. 1967. Structure of the cell wall of Staphylococcus aureus. VIII. Structure and chemical synthesis of the basic peptides released by a myxobacterium enzyme. Biochem. 6: 2591–2598.Google Scholar
  53. Jekel, P. A., W. J. Weijer, and J. J. Beintema, 1983. Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis. Analyt. Biochem. 134: 347–354.PubMedGoogle Scholar
  54. Jolles, J., J. L. Nussbaum, and P. Jones, 1983. Enzymic and chemical fragmentation of the apoprotein of the major rat brain myelin proteolipid. Biochim. Biophys. Acta 742: 33–38.PubMedGoogle Scholar
  55. Jurâsek, L., and D. R. Whitaker. 1967. Amino acid composition of the a-and ß-lytic proteases of Sorangium sp. Can. J. Biochem. 45: 917–927.PubMedGoogle Scholar
  56. Kaplan, H., V. B. Symonds, H. Dugas, and D. R. Whitaker. 1970. A comparison of properties of the a-lytic protease of Sorangium sp. and porcine elastase. Can. J. Biochem. 48: 649–658.PubMedGoogle Scholar
  57. Kaplan, H., and D. R. Whitaker. 1969. Kinetic properties of the a-lytic protease of Sorangium sp., a bacterial homologue of the pancreatopeptidases. Can. J. Biochem. 47: 305–316.PubMedGoogle Scholar
  58. Katz, W., and J. L. Strominger. 1967. Structure of the cell wall of Micrococcus lysodeikticus. II. Study of the structure of the peptides produced after lysis with the myxobacterium enzyme. Biochem. 6: 930–937.Google Scholar
  59. Katznelson, H., D. C. Gillespie, and E D. Cook. 1964. Studies on the relationships between nematodes and other soil microorganisms III. Lytic action of soil myxobacters on certain species of nematodes. Can. J. Microbiol. 10: 699–704.PubMedGoogle Scholar
  60. Krulwich, T. A., J. C. Ensign, D. J. Tipper, and J. L. Strominger. 1967. Sphere-rod morphogenesis in Arthrobacter crystallopoites. I. Cell wall composition and polysaccharides of the peptidoglycan. J. Bacteriol. 94: 734–740.PubMedPubMedCentralGoogle Scholar
  61. Lesley, S. M., and R. M. Behki. 1967. Mode of action of myxin on Escherichia coli. J. Bacteriol. 94: 1837–1845.PubMedPubMedCentralGoogle Scholar
  62. Maestrone, G., and W. Brandt. 1980. Evaluation of two cuprimyxin formulations in the treatment of cutaneous and ophthalmic infections in horses and cattle. Vet. Med./Small Anim. Clin. 75: 1307–1311.Google Scholar
  63. Maestrone, G., R. Darker, E Hemrick, and M. Mitrovic. 1972. Topical antimicrobial activity of 6-methoxy-1phenazinol 5,10-dioxide, cupric complex. Am. J. Vet. Res. 33: 185–193.PubMedGoogle Scholar
  64. Maestrone, G., and M. Mitrovic. 1974. Chemotherapeutic activity of 6-methoxy-l-phenazinol 5,10-dioxide, cupric complex in experimentally induced local microbial infections of dogs. Am. J. Vet. Res. 35: 281–284.PubMedGoogle Scholar
  65. McDonald, D. V. M., J. L. Richard, A. J. Anderson, and R. E. Fichtner. 1980. In vitro antimycotic sensitivity of yeasts isolated from infected bovine mammary glands. Am. J. Vet. Res. 41: 1987–1990.PubMedGoogle Scholar
  66. McLachlan, A. D., and D. M. Shotton. 1971. Structural similarities between a-lytic protease of myxobacter 495 and elastase. Nature New Biol. 229: 202–205.PubMedGoogle Scholar
  67. Meyers, E., R. Cooper, L. Dean, J. H. Johnson, D. S. Slusarchyk, W. H. Trejo, and P. D. Singh. 1985. Catacandins, novel anticandidal antibiotics of bacterial origin. J. Antibiot. 38: 1642–1648.PubMedGoogle Scholar
  68. Mitchell, T. G., M. S. Hendrie, and J. M. Shewan. 1969. The taxonomy, differentiation and identification of Cytophaga species. J. Appl. Bacteriol. 32: 40–50.PubMedGoogle Scholar
  69. Monahan, R. M., and D. R. Whitaker. 1976. Isolation and chemical aspects of myxosidin. Proceed. Can. Fed. Biol. Soc. 19: 33.Google Scholar
  70. Nozaki, Y., N. Katayama, S. Harada, H. Ono, and H. Okazaki 1989. Lactivicin, a naturally occurring non-ß-lactam antibiotic having ß-lactam-like action: Biological activities and mode of action. J. Antibiot. 42: 84–93.PubMedGoogle Scholar
  71. Nozaki, Y., N. Katayama, H. Ono, S. Tsubotani, S. Harada, H. Okazaki, and Y. Nakao. 1987 Binding of a non-ßlactam antibiotic to penicillin-binding proteins. Nature 325: 179–180.PubMedGoogle Scholar
  72. Olson, M. O. J., N. Nagabhushan, M. Dzwiniel, L. B. Smillie, and D. R. Whitaker. 1970. Primary structure of alytic protease: a bacterial homologue of the pancreatic serine proteases. Nature 228: 438–442.PubMedGoogle Scholar
  73. Ono, H., Y. Nozaki, N. Katayama, and H. Okazaki. 1984. Cephabacins, new cephem antibiotics of bacterial origin I. Discovery and taxonomy of the producing organisms and fermentation. J. Antibiot. 37: 1528–1535.PubMedGoogle Scholar
  74. O’Sullivan, J., J. E. McCullough, A. A. Tymiak, D. R. Kirsch, W. H. Trejo, and P. A. Principe. 1988. Lysobactin, a novel antibacterial agent produced by Lysobacter sp. I. Taxonomy, isolation and partial characterization. J. Antibiot. 41: 1740–1744.PubMedGoogle Scholar
  75. Oza, N. B. 1973. ß-Lytic protease, a neutral sorangiopeptidase. Int. J. Peptide Protein Res. 5: 365–369.Google Scholar
  76. Pate, J. L., J. L. Johnson, and E. J. Ordal. 1967. The fine structure of Chondrococcus columnaris II. Structure and formation of rhapidosomes. J. Cell Biol. 35: 15–35.PubMedPubMedCentralGoogle Scholar
  77. Pate, J. L., and E. J. Ordal. 1967. The fine structure of Chondrococcus columnaris III. The surface layers of Chondrococcus columnaris. J. Cell Biol. 35: 37–51.PubMedPubMedCentralGoogle Scholar
  78. Paterson, G. M., and D. R. Whitaker. 1969. Some features of the optical rotatory dispersion spectrum of the alytic protease of Sorangium sp. Can. J. Biochem. 47: 317–321.PubMedGoogle Scholar
  79. Peterson, E. A., D. C. Gillespie, and E D. Cook. 1966. A wide-spectrum antibiotic produced by a species of Sorangium. Can. J. Microbiol. 12: 221–230.PubMedGoogle Scholar
  80. Reichenbach, H. 1967. Die wahre Natur der Myxobakterien-“Rhapidosomen.” Arch. Mikrobiol. 56: 371–383.Google Scholar
  81. Reichenbach, H. 1981. Taxonomy of the gliding bacteria. Annu. Rev. Microbiol. 35: 339–364.PubMedGoogle Scholar
  82. Sendecki, W, K. Mikulik, and A. T. Matheson. 1971. Some properties of the ribosomes from myxobacter 495. Can. J. Biochem. 49: 1333–1339.PubMedGoogle Scholar
  83. Shilo, Miriam. 1970. Lysis of blue green algae by myxobacter. J. Bacteriol. 104: 453–461.PubMedPubMedCentralGoogle Scholar
  84. Shilo, Moshe. 1967. Formation and mode of action of algal toxins. Bacteriol. Rev. 31: 180–193.PubMedPubMedCentralGoogle Scholar
  85. Sigg, H. P., and A. Toth. 1967. Über die Struktur der Phenazin-N-oxide. Helv. Chim. Acta 50: 716–719.PubMedGoogle Scholar
  86. Silen, J. L., and D. A. Agard. 1989. The a-lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo. Nature 341: 462–464.PubMedGoogle Scholar
  87. Silen, J. L., D. Frank, A. Fujishige, R. Bone, and D. A. Agard. 1989. Analysis of prepro-a-lytic protease expression in Escherichia coli reveals that the pro region is required for activity. J. Bacteriol. 171: 1320–1325.PubMedPubMedCentralGoogle Scholar
  88. Silen, J. L., C. N. McGrath, K. R. Smith, and D. A. Agard. 1988. Molecular analysis of the gene encoding a-lytic protease: Evidence for a preproenzyme. Gene 69: 237–244.PubMedGoogle Scholar
  89. Snyder, W. E., and R. K. Imhoff. 1975. Cuprimyxin, a new topical antibiotic. Vet. Med. Small Anim Clin. 70: 1421–1423.PubMedGoogle Scholar
  90. Soriano, S. 1945. El nuevo orden Flexibacteriales y la clasificación de los órdenes de las bacterias. Rev. Argent. Agron. (Buenos Aires). 12: 120–140.Google Scholar
  91. Soriano, S. 1947. The Flexibacteriales and their systematic position. Antonie van Leeuwenhoek 12: 215–222.PubMedGoogle Scholar
  92. Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives. ” Int. J. Syst. Bacteriol. 38: 321–325.Google Scholar
  93. Stewart, J. R., and R. M. Brown. 1969. Cytophaga that kills or lyses algae. Science 164: 1523–1524.Google Scholar
  94. Stewart, J. R., and R. M. Brown. 1970. Killing of green and blue-green algae by a nonfruiting myxobacterium, Cytophaga N-5. Bacteriol. Proceed., p. 18.Google Scholar
  95. Stewart, J. R., and R. M. Brown. 1971. Algicidal nonfruiting myxobacteria with high G+C ratios. Arch. Mikrobiol. 80: 176–190.PubMedGoogle Scholar
  96. Stewart, W. D. P. and M. J. Daft. 1976. Algal lysing agents of freshwater habitats, p. 63–90. In: F. A. Skinner, and J. G. Carr (ed.), Microbiology in agriculture, fisheries and food. Academic Press, London.Google Scholar
  97. Stewart, W. D. P., and M. J. Daft. 1977. Microbial pathogens of cyanophycean blooms. Adv. Aquat. Microbiol. 1: 177–218.Google Scholar
  98. Tan, I., W. Hartmann, U. Guntermann, A. Hüttermann, and H. Kühlwein. 1974. Studies on the cell cycle of Myxobacter AL-1 I. Size fractionation of exponentially growing cells by zonal centrifugation. Arch. Microbiol. 100: 389–396.PubMedGoogle Scholar
  99. Tipper, D. J. 1969. Structures of the cell wall peptidoglycans of Staphylococcus epidermis Texas 26 and Staphylococcus aureus Copenhagen. II. Structure of neutral and basic peptides from hydrolysis with the myxobacter AL-1 peptidase. Biochem. 8: 2192–2202.Google Scholar
  100. Tsai, C. S., D. R. Whitaker, and L. Jurâsek. 1965. Lytic enzymes of Sorangium sp. Action of the a-and ß-lytic proteases on two bacterial mucopeptides. Can. J. Biochem. 43: 1971–1983.PubMedGoogle Scholar
  101. Tymiak, A. A., T. J. McCormick, and S. E. Unger. 1989. Structure determination of lysobactin, a macrocyclic peptide lactone antibiotic. J. Organ. Chem. 54: 1149–1157.Google Scholar
  102. Veldkamp, H. 1955. A study of the aerobic decomposition of chitin by microorganisms. Mededelingen van de Landbouwhogeschool Wageningen (Nederland). 55 (3): 127–174.Google Scholar
  103. von Tigerstrom, R. G. 1980. Extracellular nucleases of Lysobacter enzymogenes: production of the enzymes and purification and characterization of an endonuclease. Can. J. Microbiol. 26: 1029–1037.Google Scholar
  104. von Tigerstrom, R. G. 1981. Extracellular nucleases of Lysobacter enzymogenes: purification and characterization of a ribonuclease. Can. J. Microbiol. 27: 1080–1086.Google Scholar
  105. von Tigerstrom, R. G. 1983. The effect of magnesium and manganese ion concentrations and medium composition on the production of extracellular enzymes by Lysobacter enzymogenes. J. Gen. Microbiol. 129: 2293–2299.Google Scholar
  106. von Tigerstrom, R. G. 1984. Production of two phosphatases by Lysobacter enzymogenes and purification and characterization of the extracellular enzyme. Appl. Environm. Microbiol. 47: 693–698.Google Scholar
  107. von Tigerstrom, R. G., and S. Stelmaschuk. 1985. Localization of the cell-associated phosphatase in Lysobacter enzymogenes. J. Gen. Microbiol. 131: 1611–1618.Google Scholar
  108. von Tigerstrom, R. G., and S. Stelmaschuk. 1986. Purification and characterization of the outer membrane associated alkaline phosphatase of Lysobacter enzymogenes. J. Gen. Microbiol. 132: 1379–1387.Google Scholar
  109. von Tigerstrom, R. G., and S. Stelmaschuk. 1987a. Cornparison of the phosphatases of Lysobacter enzymogenes with those of related bacteria. J. Gen. Microbiol. 133: 3121–3127.Google Scholar
  110. von Tigerstrom, R. G., and S. Stelmaschuk. 1987b. Purification and partial characterization of an amylase from Lysobacter brunescens. J. Gen. Microbiol. 133: 3437–3443.Google Scholar
  111. von Tigerstrom, R. G., and S. Stelmaschuk. 1989. Localization and characterization of lipolytic enzymes produced by Lysobacter enzymogenes. J. Gen. Microbiol. 135: 1027–1035.Google Scholar
  112. Wah-On, H. C., R. M. R. Branion, and G. A. Strasdine. 1980. Protease production by fermentation of fish solubles from salmon canning processes. Can. J. Microbiol. 26: 1049–1056.PubMedGoogle Scholar
  113. Weigele, M., and W. Leimgruber. 1967. The structure of myxin. Tetrahedr. Lett. No. 8: 715–718.Google Scholar
  114. Weigele, M., G. Maestrone, M. Mitrovic, and W. Leimgruber. 1971. Antimicrobial agents structurally related to myxin. Antimicrob. Agents Chemother. 1970: 46–49.Google Scholar
  115. Westler, W. M., J. L. Markley, and W. W. Bachovkin. 1982. Proton NMR spectroscopy of the active site histidine of a-lytic proteinase. Effects of adjacent “C and 15N labels. FEBS Lett. 138: 233–235.PubMedGoogle Scholar
  116. Whitaker, D. R. 1965. Lytic enzymes of Sorangium sp. Isolation and enzymatic properties of the a-and ß-lytic proteases. Can. J. Biochem. 43: 1935–1954.PubMedGoogle Scholar
  117. Whitaker, D. R. 1967a. Simplified procedures for production and isolation of the bacteriolytic proteases of Sorangium sp. Can. J. Biochem. 45: 991–993.PubMedGoogle Scholar
  118. Whitaker, D. R. 1967b. The cause of the bi-component electrophoretic pattern of Sorangium ß-lytic protease in acetate buffer containing 7 M urea. Can. J. Biochem. 45: 994–995.PubMedGoogle Scholar
  119. Whitaker, D. R. 1970. The a-lytic protease of a myxobacterium, p. 599–613. In: G. E. Perlmann, and L. Lorand (ed.), Methods in enzymology, vol. 19. Proteolytic enzymes. Academic Press, New York.Google Scholar
  120. Whitaker, D. R., E D. Cook, and D. C. Gillespie. 1965a. Lytic enzymes of Sorangium sp. Some aspects of enzyme production in submerged culture. Can. J. Biochem. 43: 1927–1933.PubMedGoogle Scholar
  121. Whitaker, D. R., L. Jurâsek, and C. Roy. 1966. The nature of the bacteriolytic proteases of Sorangium sp. Biochem. Biophys. Res. Commun. 24: 173–178.PubMedGoogle Scholar
  122. Whitaker, D. R., and C. Roy. 1967. Concerning the nature of the a-and ß-lytic proteases of Sorangium sp. Can. J. Biochem. 45: 911–916.PubMedGoogle Scholar
  123. Whitaker, D. R., C. Roy, C. S. Tsai, and L. Jurâsek. 1965b. Lytic enzymes of Sorangium sp. A comparison of the proteolytic properties of the a-and ß-lytic proteases. Can. J. Biochem. 43: 1961–1970.PubMedGoogle Scholar
  124. Wingard, M., G. Matsueda, and R. S. Wolfe. 1972. Myxobacter AL-1 protease II: Specific peptide bond cleavage on the amino side of lysine. J. Bacteriol. 112: 940–949.PubMedPubMedCentralGoogle Scholar
  125. Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt. 1985. The phylogeny of purple bacteria: The gamma subdivision. Syst. Appl. Microbiol. 6: 25–33.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Hans Reichenbach

There are no affiliations available

Personalised recommendations