Tilting Stages for Biological Applications

  • James N. Turner
  • Ugo Valdrè


The specimen stage of the electron microscope is the most sophisticated mechanical subsystem in the instrument, It must position any portion of the specimen in the field of view, orient the specimen with respect to the optical axis, cool it to liquid nitrogen or liquid helium temperatures, and be stable to atomic dimensions for a minute or more. The stage must have two 3-mm translation motions, which at 0.3 nm resolution corresponds to a stability of one part in 107. This degress of precision corresponds to a deviation of 40 m in orbit of the moon. The stage must tilt the specimen ±70o about at least one axis, but two orthogonal axes and ±90o would be ideal. Stages for tomography have a precision of ±0.03o in tilt angle, corresponding to one part in 2 × 103 (Turner et al., 1988). These are especially demanding criteria since the device must operate in a high-strength magntic field, which cannot be perturbed to one part in 106. The mechanism must be contained in a volume of about one to a few cubic centimeters in the middle of an electron optical column, and vibration problems can be severe (Turner and Ratkowski, 1982). Some vibration modeling has been done (Valle et al., 1980), but is of limited value due to the extreme mechanical complexity. In spite of the stringent conditions, a number of successful stages have been constructed (Valdrè, 1979; Swann, 1979; Valdrè and Goronge, 1971; Thrner et al., 1989a).


Tilt Angle Objective Lens Specimen Holder Specimen Orientation Specimen Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allinson, D. L. and Kisch, E. (1972). High voltage electron microscope specimen rod with demountable double tilting facilities. J. Phys. E: Sci. Instrum. 5:205–207.CrossRefGoogle Scholar
  2. Aoki, Y., Kihara, H., Harada, Y., Fujiyoshi, Y., Uyeda, N., Yamagishi, H., Morikawa, K., and Mizusaki, T. (1986). Development of super fluid helium stage for HRTEM, in Proc. XIth Int. Cong. Electron Microscopy, (T. Imura, S. Maruse and T. Suzuki, eds.), Vol. 3, pp. 1827–1828. Japanese Society of Electron Microscopy, Tokyo.Google Scholar
  3. Arii, T. and Hama, K. (1987). Method of extracting three-dimensional information from HVTEM stereo images of biological materials. J. Electron Microsc. 36:177–195.Google Scholar
  4. Barnard, D. P., Rexford, D., Tivol, W. F., and Turner, J. N. (1986). Side-entry differentially pumped environmental chamber for the AEI-EM7 HVEM, in Proc. 44th Electron Microsc. Soc. Am., pp. 888–889.Google Scholar
  5. Barnard, D. P., Turner, J. N., Frank, J., and McEwen, B. F. (forthcoming). An unlimited-tilt stage for the high-voltage electron microscope. J. Micros. Google Scholar
  6. Barnes, D. C. and Warner, E. (1962). A kinematic specimen goniometer stage for the Siemens electron microscope. Br. J. Appl. Phys. 13:264–265.CrossRefGoogle Scholar
  7. Bleloch, A. L. (1989). Secondary electron spectroscopy in a dedicated STEM. Ultramicroscopy 29:147–152.Google Scholar
  8. Browning, G. (1974). A new axis-centered stage, in High Voltage Electron Microscopy: Proc. 3rd Int. Conf. (P. R. Swann, C. J. Humphreys, and M. J. Goringe, eds.), pp. 121–123. Academic Press, New York.Google Scholar
  9. Bursill, L. A., Spargo, A. E. C., Wentworth, D., and Wood, G. (1979). A goniometer for electron microscopy at 1.6 Å point to point resolution. J. Appl. Crystallogr. 12:279–286.CrossRefGoogle Scholar
  10. Butler, E. P. and Hale, K. F. (1981). Dynamic experiments in the electron microscope, in Practical Methods in Electron Microscopy (A. M. Glauert, ed.), Vol.9. North-Holland, Amsterdam.Google Scholar
  11. Capilluppi, C., and Valdré, U. (1987). A specimen holder for brightness measurements in a TEM, in ATTI XVI Cngr. Microscopia Electtronica, pp. 277–278. Societá Italiana di Microscopia Electtronica.Google Scholar
  12. Chalcroft, J. P. and Davey, C. L. (1984). A simply constructed extreme-tilt holder for the Philips eucentric goniometer stage. J. Microsc. 134:41–48.CrossRefGoogle Scholar
  13. Chiu, W., Knapek, E., Jeng, T. W., and Dietrich, I. (1981). Electron radiation damage of a thin protein crystal at 4 K. 6:291–295.Google Scholar
  14. Chou, C. T. (1987). Computer software for specimen orientation adjustment using double-tilt or rotation holders. J. Electron Mtcrosc. Tech. 7:263–268.CrossRefGoogle Scholar
  15. Craven, A. J. and Valdré, U. (1979). Visibility of diffraction patterns and bend contours in thick composite amorphous-crystalline specimens observed in STEM and CTEM. J. Microsc. 115:211–223.CrossRefGoogle Scholar
  16. Crowther, R. A., DeRosier, D. J., and Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. London A 317:319–340.CrossRefGoogle Scholar
  17. Donovan, P., Everett, P., Self, P. G., Stobbs, W. M., and Valdré, U. (1983). High resolution, top entry goniometers for use in the JEOL transmission electron microscopes. J. Phys. E: Sci. Instrum. 16:1242–1246.Google Scholar
  18. Everett, P. G. and Valdré, U. (1985). A double tilting cartridge for transmission electron microscopes with maximum solid angle of exit at the specimen. J. Microsc. 139:35–40.CrossRefGoogle Scholar
  19. Frank, J., McEwen, B. F., Radermacher, M., Turner, J. N., and Rieder, C. L. (1987). Three-dimensional tomographic reconstruction in high voltage electron microscopy. J. Electron Microsc. Tech. 6:193–205.Google Scholar
  20. Fujiyoshi, Y. (1990). High-resolution cryo-electron microscopy of biological macromolecules, in Proc. XIIth Int. Congr. Electron Microscopy (L. D. Peachey and D. B. Williams, eds.), Vol. 1, pp. 126–127. San Francisco Press, San Francisco.Google Scholar
  21. Fujiyoshi, Y., Uyeda, N., Yamagishi, H., Morikawa, K., Mizusaki, T., Aoki, Y., Kihara, H., and Harada, Y. (1986). Biological macromolecules observed with high resolution cryo-electron microscope, in Proc. Xlth Int. Congr. Electron Microscopy (T. Imura, S. Maruse, and T. Suzuki, eds.), Vol. 3, pp. 1829–1832. Japanese Society of Electron Microscopy, Tokyo.Google Scholar
  22. Glaeser, R. M. (1975). Radiation damage and biological electron microscopy, in Physical Aspects of Electron Microscopy and Microbeam Analysis (B. M. Siegel and D. R. Beaman, eds.), pp. 205–208. Wiley, New York.Google Scholar
  23. Goringe, M. J. and Valdrè, U. (1968). An investigation of superconducting materials in a high voltage electron microscope, in Proc. 4th European Reg. Conf: on Electron Microscopy (D. S. Bocciarelli, ed.), Vol. I, pp. 41–42. Tipografiia Poliglotta Vaticana, Rome.Google Scholar
  24. Heide, H. G. (1962). The prevention of contamination without beam damage to the specimen, in Proc. 5th Int. Congr. Electron Microscopy (S. S. Breese, ed.), Vol. I, p. A-4. Academic Press, New York.Google Scholar
  25. Heide, H. G. and Urban, K. (1972). A novel specimen stage permitting high-resolution electron microscopy at low temperatures. J. Phys. E: Sci. Instrum. 5:803–807.CrossRefGoogle Scholar
  26. Horn, E., Ashton, F., Haselgrove, J. C., and Peachy, L. D. (1991). Tilt unlimited: A 360 degree tilt specimen holder for the JEOL 4000-EX 400kV TEM with modified objective lens, in Proc. 49th Electron Microsc. Soc. Am. (G. W. Bailey and E. L. Hall, eds.), pp. 996–997. San Francisco Press, San Francisco.Google Scholar
  27. King, M. V. (1981). Theory of stereopsis, in Methods in Cell Biology, Vol. 23, Three-Dimensional Ultrastructure in Biology (J. N. Turner, ed.), Academic Press, New York.Google Scholar
  28. Klug, A. and Crowther, R. A. (1972). Three-dimensional image reconstruction from the viewpoint of information theory. Nature 238:435–440.CrossRefGoogle Scholar
  29. Laufer, E. E. and Milliken, K. S. (1973). Note on stereophotography with the electron microscope. J. Phys. E: Sci. Instrum. 6:966–968.CrossRefGoogle Scholar
  30. Lawrence, M. C. (1983). Alignment of images for three-dimensional reconstruction of non-periodic objects. Proc. Electron Microsc. Soc. S. Afr. 13:19–20.Google Scholar
  31. Leteurtre, J. (1972). Reported by B. Gentry in Methodes et Techniques Nouvelles D’Observation en Metallurgie Physique (B. Jouffrey, ed.), p. 29. Societe Francaise de Microscopic Electronique, Paris.Google Scholar
  32. Lucas, G., Phillips, R., and Teare, P. W. (1963). A precision goniometer stage for the electron microscope. J. Sci. Instrum. 40:23–25.CrossRefGoogle Scholar
  33. Luther, P. K., Lawrence, M. C., and Crowther, R. A. (1988). A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy 24:7–18.PubMedCrossRefGoogle Scholar
  34. MacKenzie, J. M. and Bergensten, R. W. (1989). A five -axis computer-controlled stage for the transmission electron microscope, in Proc. 47th Ann. Mtg. Elect. Microsc. Soc. Am. (G. W. Bailey, ed.), pp. 50–51. San Francisco Press, San Francisco.Google Scholar
  35. Mills, J. C. and Moodie, A. F. (1968). Multipurpose high resolution stage for the electron microscope. Rev. Sci. Instrum. 39:962–969.CrossRefGoogle Scholar
  36. Parsons, D. F., Matricardi, V. R., Moretz, R. C., and Turner, J. N. (1974). Electron microscopy and diffraction of wet unstained and unfixed biological objects, in Advanced Biology and Medical Physics (J. H. Lawrence, J. W. Gofman, and T. L. Hayes, eds.), Vol. 15, pp. 161–262. Academic Press, New York.Google Scholar
  37. Peachey, L. D. and Heath, J. P. (1989). Reconstruction from stereo and multiple tilt electron microscope images of thick sections of embedded biological specimens using computer graphic methods. J. Microsc. 153:193–203.PubMedCrossRefGoogle Scholar
  38. Pennycook, S. L., Brown, L. M., and Craven, A. J. (1980). Observation of cathodoluminescence at single dislocations by STEM. Philos. Mag. A41:589–600.CrossRefGoogle Scholar
  39. Radermacher, M. (1988). Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron Microsc. Tech. 9:359–394.PubMedCrossRefGoogle Scholar
  40. Radermacher, M. and Hoppe, W. (1980). Properties of 3-D reconstruction from projections by conical tilting compared with single axis tilting, in Proc. 7th European Congr. Electron Microscopy (P. Brederoo and G. Boom, eds.), Vol. I, pp. 132–133.Google Scholar
  41. Rakels, C. J., Tiemeijer, J. C., and Witteveen, K. W. (1968). The Philips electron microscope EM300. Philips Tech. Rev. 29:370–386.Google Scholar
  42. Reimer, L. (1989). Transmission Electron Microscopy, p. 440. Springer, Berlin.Google Scholar
  43. Ruknudin, A., Song, M. J., and Sachs, F. (1991). The ultrastructure of patch-clamped membranes: A study using high-voltage electron microscopy. J. Cell Biol. 122:125–134.CrossRefGoogle Scholar
  44. Sachs, F. and Song, M. J. (1987). High-voltage electron microscopy of patch-clamped membranes, in Proc. 45th Electron Microsc. Soc. Am. (G. W. Bailey, ed.), pp. 582–583. San Francisco Press, San Francisco.Google Scholar
  45. Shaw, P. J. and Hills, G. J. (1981). Tilted specimen in the electron microscope: A simple holder and the calculation of tilt angles for crystalline specimens. Micron 12:279–282.Google Scholar
  46. Siemens' Focus Information (1975). Double tilt and lift unit for Elmiskop 101 and 102. Publication C73000-B3176-C2–1, pp. 1–18.Google Scholar
  47. Sparrow, T. G., Tang, T. T., and Valdré, U. (1984). Objective lens and specimen stage for a versatile high voltage CTEM/STEM. J. Microsc. Spectrosc. Electron 9:279–290.Google Scholar
  48. Spence, J. C. H. (1988). A scanning tunneling microscope in a side-entry holder for reflection electron microscopy in the Philips EM400. Ultramicroscopy 25:165–170.CrossRefGoogle Scholar
  49. Spence, J. C. H., Lo, W., and Kuwabara, M. (1990). Observation of the graphite surface by reflection electron microscopy during STM operation. Ultramicroscopy 33:69–82.CrossRefGoogle Scholar
  50. Stols, A. L. H., Smits, H. T. J., and Stadhonders, A. M. (1986). Modification of a TEM-goniometer specimen holder to enable beam current measurements in a (S)TEM for use in quantitative x-ray microanalysis. J. Electron Microsc. Tech. 3:379–384.CrossRefGoogle Scholar
  51. Swann, P. R. (1972). High voltage microscopy studies of environmental reactions, in Electron Microscopy and Structure of Materials (G. Thomas, R. M. Fulrath, and R. M. Fisher, eds.), p. 878. University of California Press, Berkeley.Google Scholar
  52. Swann, P. R. (1979). Side entry specimen stages. Krist. Tech. 14:1235–1243.CrossRefGoogle Scholar
  53. Swann, P. R. and Lloyd, A. E. (1974). A high angle, double tilting cold stage for the AEI EM7, in Proc. Electron Microsc. Soc. Am. (C. J. Arcenaux, ed.), pp. 450–451. LA.Google Scholar
  54. Sykes, L. J. (1979). Computer-aided tilting in the electron microscope, in Proc. Electron Microsc. Soc. Am. (G. W. Bailey, ed.), pp. 602–603. Claitor’s, Baton Rouge, LA.Google Scholar
  55. Tatlock, G. J., Spain, J., Raynard, G., Sinnock, A. C., and Venables, J. A. (1980). A liquid helium cooled environmental cell for the JEOL 200A TEM, in Electron Microscopy and Analysis, pp. 39–42. Int. Phys. Conf. Series N. 52, Institute of Physics, London.Google Scholar
  56. Turner, J. N. (1981). Stages and stereo pair recording, in Methods in Cell Biology Vol. 23, ThreeDimensional Ultrastructure in Biology (J. N. Turner, ed.), pp. 33–51. Academic Press, New York.Google Scholar
  57. Turner, J. N., See, C. W., and Matuszek, G. (1986). A simple specimen rotation tip for CTEM and HVEM. J. Electron Microsc. Tech. 3:367–368.CrossRefGoogle Scholar
  58. Turner, J. N., Barnard, D. P., Matuszek, G., and See, C. W. (1988). High-precision tilt stage for the high-voltage electron microscope. Ultramicroscopy 26:337–344.PubMedGoogle Scholar
  59. Turner, J. N., Barnard, D. P., McCauley, P., and Tivol, W. F. (1990). Specimen orientation and environment, in Electron Crystallography (J. Freyer, ed.). Kluwer, Boston.Google Scholar
  60. Turner, J. N. and Ratkowski, A. J. (1982). An improved double-tilt stage for the AEI EM7 high-voltage electron microscope. J. Microsc. 127:155–159.CrossRefGoogle Scholar
  61. Turner, J. N., Rieder, C. L., Collins, D. N., and Chang, B. B. (1989b). Optimum specimen positioning in the electron microscope using a double-tilt stage. J. Electron Microsc. Tech. 11:33–40.PubMedCrossRefGoogle Scholar
  62. Turner, J. N., Valdrè, U., and Fukami, A. (1989a). Control of specimen orientation and environment. J. Electron Microsc. Tech. 11:258–271.PubMedCrossRefGoogle Scholar
  63. Turner, J. N., Barnard, D. P., McCauley, P., and Dorset, D. L. (1991). Diffraction and imaging from all perspectives: Unlimited specimen tilting in the high-voltage electron microscope. Proc. 49th Electron Microsc. Soc. Am.:994–995.Google Scholar
  64. Valdrè, U. (1962). A simple goniometer stage for the Siemens Elmiskop. I. J. Sci. Instrum. 39:278–280.CrossRefGoogle Scholar
  65. Valdrè, U. (1964). A double-tilting liquid-helium cooled object stage for the Siemens electron microscope, in Proc. 3rd European Reg. Conf. on Electron Microscopy, Vol. A, pp. 61–62. Academy of Sciences, Prague.Google Scholar
  66. Valdrè, U. (1967). Unpublished report at 126–129, in Electron Microscopy in Materials Science (E. Ruedi and U. Valdrè, eds.), Part I, pp. 113–114. Commission of the European Communities, Luxemburg 1975.Google Scholar
  67. Valdrè, U. (1968). Combined cartridges and versatile specimen stage for electron microscopy. Nuovo Cimento Ser. B 53:157–173.CrossRefGoogle Scholar
  68. Valdrè, U. (1979). Electron microscope stage design and applications. J. Microsc. 117:55–75.CrossRefGoogle Scholar
  69. Valdré, U. and Goringe, M. S. (1971). Special electron microscope specimen stages, in Electron Microscopy in Material Science (U. Valdrè, ed.). Academic Press, New York.Google Scholar
  70. Valdrè, U. and Home, R. W. (1975). A combined freeze chamber and low temperature stage for an electron microscope. J. Microsc. 103:305–317.CrossRefGoogle Scholar
  71. Valdrè, U., Robinson, E. A., Pashley, D. W., Stowell, and Law, T. J. (1970). An ultra-high vacuum electron microscope specimen chamber for vapor deposition studies. J. Phys. E: Sci. Instrum. 3:501–506.CrossRefGoogle Scholar
  72. Valdrè, U. and Tsuno, K. (1986). A possible design for a high tilt, fully eucentric, goniometer stage. J. Electron Microsc. (Suppl.) 35:925–926.Google Scholar
  73. Valdrè, U. and Tsuno, K. (1988). A contribution to the unsolved problem of a high-tilt eucentric goniometer stage. Acta Crystallogr. A44:775–780.Google Scholar
  74. Valle, R., Gentry, B., and Marraud, A. (1980). A new side entry eucentric goniometer stage for HVEM,Google Scholar
  75. in Electron Microscopy 1980, Vol. 4., Proc. 6th Int. Conf. HVEM (P. B. Brederoo and J. van Landuyt, eds.), pp. 34–37.Google Scholar
  76. von Ardenne, M. (1940a). Stereo-Übermikroskopie mit dem Universal-E]ektronenmikroskop. Naturwissenschaften 16:248–252.CrossRefGoogle Scholar
  77. von Ardenne, M. (1940b). Uber ein Universal-Elektronenmikroskop fur Hellfeld-, Dunkelfeld- und Stereobild-Betrieb. Z. Phys. 15:339–368.Google Scholar
  78. von Ardenne, M. (1940c). Elektronen-Ubermikroskopie Physik, Technik. Ergebnisse Verlag von Julius Springer, Berlin.CrossRefGoogle Scholar
  79. Waddington, C. P. (1974). Calibration of a Siemens Elmiskop lb double tilting goniometer stage. J. Phys. E: Sci. Instrum. 7:842–846.CrossRefGoogle Scholar
  80. Ward, P. R. (1965). A goniometer specimen holder and anticontamination stage for the Siemens Elmiskop I. J. Sci. Instrum. 42:767–769.CrossRefGoogle Scholar
  81. Zemlin, F., Reuber, E., Beckmann, B., Zeitler, E., and Dorset, D. L. (1985). Molecular resolution electron micrographs of monolamellar paraffin crystals. Science 229:461–462.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • James N. Turner
    • 1
  • Ugo Valdrè
    • 2
  1. 1.Wadsworth Center for Laboratories and Research, New York State Department of Health and School of Public Health SciencesState University of New York at AlbanyAlbanyUSA
  2. 2.Centro di Microscopia Elettronica, Dipartimento di FisicaUniversità Degli Studi di BolognaBolognaItaly

Personalised recommendations