Sample Shrinkage and Radiation Damage

  • Pradeep K. Luther


For successful electron microscope tomography, an understanding of the effects of the electron beam on the specimen is important. Radiation damage in the electron microscope manifests itself in several ways: loss of high-resolution structure, mass loss, and specimen shrinkage. These effects must be considered for biological materials of all types in different preparations. The methods employed to minimize the effects of electron irradiation include low-dose imaging techniques and cooling the sample to liquid nitrogen or liquid helium temperatures.


Gold Particle Radiation Damage Section Thickness Electron Irradiation Fringe Pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amos, L. A., Henderson, R., and Unwin, P. N. T. (1982). Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol. 39:183–231.PubMedCrossRefGoogle Scholar
  2. Bedi, K. S. (1987). A simple method of measuring the thickness of semi-thin and ultra-thin sections. J. Microsc. 148:107–111.Google Scholar
  3. Bennett, P. M. (1974). Decrease in section thickness on exposure to the electron beam; the use of tilted sections in estimating the amount of shrinkage. J. Cell Sci. 15:693–701.PubMedGoogle Scholar
  4. Berriman, J. Bryan, R. K., Freeman, R., and Leonard, K. R. (1984). Methods for specimen thickness determination in electron microscopy. Ultramnicroscopy 13:351–364.Google Scholar
  5. Berriman, J. and Leonard, K. R. (1986). Methods for specimen thickness determination in electron microscopy. II: Changes in thickness with dose. Ultramicroscopy 19:349–366.Google Scholar
  6. Bullough, P. and Henderson, R. (1987). Use of spot-scan procedure for recording low-dose micrographs of beam-sensitive specimens. Ultramicroscopy 21:223–230.CrossRefGoogle Scholar
  7. Cantino, M. E., Wilkinson, L. E., Goddard, M. K., and Johnson, D. E. (1986). Beam induced mass loss in high resolution biological microanalysis. J. Microsc. 144:317–327.PubMedCrossRefGoogle Scholar
  8. Cosslett, A. (1960). The effect of the electron beam on thin sections. In Proc. 1st European Conf. Electron Micros., Delft, Vol. II, pp. 678–681.Google Scholar
  9. Dorset, D. L. and Parsons, D. F. (1975). Thickness determination of wet protein microcrystals: Use of Laue zones in cross-grating electron diffraction patterns. J. Appl. Phys. 46:938–940.Google Scholar
  10. Frank, J. (1990). Classification of macromolecular assemblies studied as “single particles”. Q. Rev. Biophys. 23:281–329.PubMedCrossRefGoogle Scholar
  11. Gillis, J-M. and Wibo, M. (1971). Accurate measurement of the thickness of ultrathin sections by interference microscopy. J. Cell Biol. 49:947–949.Google Scholar
  12. Grubb, D. T. (1974). Radiation damage and electron microscopy of organic polymers. J. Mater. Sci. 9:1715–1736.CrossRefGoogle Scholar
  13. Gunning, B. E. S. and Hardham, A. R. (1977). Estimation of the average section thickness in ribbons of ultra-thin sections. J. Microsc. 109:337–340.Google Scholar
  14. Hall, T. A. and Gupta, B. L. (1974). Beam induced loss of organic mass under electron microprobe conditions. J. Microsc. 100:177–188.Google Scholar
  15. Hayward, S. B. and Glaeser, R. M. (1979). Radiation damage of purple membrane at low temperature. Ultramicroscopy 4:201–210.CrossRefGoogle Scholar
  16. Jesior, J-C. (1982). A new approach for the visualization of molecular arrangement in biological microcrystals. Ultramicroscopy 8:379–384.PubMedCrossRefGoogle Scholar
  17. Jesior, J-C. and Wade, R. H. (1987). Electron-irradiation-induced flattening of negatively stained 2D protein crystals. Ultramicroscopy 21:313–320.Google Scholar
  18. Kinnamon, J. C. and Young, S. S. (1989). Three-dimensional reconstructions from serial sections using the IBM PC. Eur. J. Cell Biol. 48:Suppl. 25, 65–68.Google Scholar
  19. Lamvik, M. K. (1991). Radiation damage in dry and frozen hydrated organic material. J. Microsc. 161:171–181.CrossRefGoogle Scholar
  20. Lamvik, M. K., Davilla, S. D., and Klatt, L. L. (1989). Substrate properties affect the mass loss rate in collodion at liquid helium temperature. Ultramicroscopy 27:241–250.PubMedCrossRefGoogle Scholar
  21. Lamvik, M. K., Kopf, D. A., and Davilla, S. D. (1987). Mass loss rate in collodion is greatly reduced at liquid helium temperature. J. Microsc. 148:211–217.PubMedCrossRefGoogle Scholar
  22. Leapman, R. D., Fiori, C. E., and Swyt, C. R. (1984). Mass thickness determination by electron energy loss for quantitative x-ray microanalysis in biology. J. Microscopy 133:239–253.CrossRefGoogle Scholar
  23. Lepault, J. and Pitt, T. (1984). Projected structure of an unstained, frozen-hydrated T-layer of Bacillus brevis. EMBO J. 3:101–105.Google Scholar
  24. Luther, P. K., Lawrence, M. C., and Crowther, R. A. (1988). A method for monitoring the collapse of plastic sections as a function of electron dose. Ultrannicroscopy 24:7–18.CrossRefGoogle Scholar
  25. Ohno, S. (1980). Morphometry for determination of size distribution of peroxisomes in thick sections by high-voltage electron microscopy. I: Studies on section thickness. J. Electron Microsc. 29:230–235.Google Scholar
  26. Peachey, L. D. (1958). A study of section thickness and physical distortion produced during microtomy. J. Biophys. Biochem. Cytol. 4:233–242.PubMedCrossRefGoogle Scholar
  27. Porter, K. R. and Blum, J. (1953). A study in microtomy for electron microscopy. Anat. Rec. 117:685.PubMedCrossRefGoogle Scholar
  28. Siegel, G. (1972). Der Einflus tiefer Temperaturen auf die Strahlenschadigung von organischen Kristallen durch 100 keV-Electronen. Z. Naturforsch 27a:325–332.Google Scholar
  29. Slot, J. W. and Geuze, H. J. (1985). A new method of preparing gold probes for multiple-labeling cytochemistry. Eur. J. Cell Biol. 38:87–93.PubMedGoogle Scholar
  30. Sjostrom, M., Squire, J. M., Luther, P., Morris, E., and Edman, A-C. (1991). Cryoultramicrotomy of muscle; improved preservation and resolution of muscle ultrastructure using negatively stained ultrathin cryosections. J. Microscopy 163:29–42.CrossRefGoogle Scholar
  31. Small, J. V. (1968). Measurements of section thickness, in Proc. 4th European Congr. on Electron Microscopy (S. Bocciareli, ed.), Vol. 1, pp. 609–610. Tipografia, Poliglotta Vaticana, Rome.Google Scholar
  32. Spencer, M. (1982). Fundamentals of Light Microscopy. IUPAB Biophysics Series.Google Scholar
  33. Stenn, K. and Bahr, G. F. (1971). Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration. J. Ultrastructure Res. 31:526–550.CrossRefGoogle Scholar
  34. Steven, A. C. and Navia, M. A. (1980). Fidelity of structure representation in electromicrographs of negatively stained protein molecules. Proc. Nat. Acad. Sci. USA 77:4721–4725.PubMedCrossRefGoogle Scholar
  35. Unwin, P. N. T. (1974). Electron microscopy of the stacked disk aggregate of tobacco mosaic virus proteins. II: The influence of electron irradiation on the stain distribution. J. Mol. Biol. 87:657–670.PubMedCrossRefGoogle Scholar
  36. Wade, R. H. (1984). The temperature dependence of radiation damage in organic and biological materials. Ultramicroscopy 14:265–270.CrossRefGoogle Scholar
  37. Williams, M. A. and Meek, G. A. (1966). Studies on thickness variation in ultrathin sections for electron microscopy. J. Roy. Microsc. Soc. 85:337–352.CrossRefGoogle Scholar
  38. Yang, G. C. H. and Shea, S. M. (1975). The precise measurement of the thickness of ultrathin sections by a “re-sectioned section” technique. J. Microsc. 103:385–392.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Pradeep K. Luther
    • 1
  1. 1.The Blackett LaboratoryImperial CollegeLondonEngland

Personalised recommendations