Three-Dimensional Reconstruction of Noncrystalline Macromolecular Assemblies

  • Terence Wagenknecht

Abstract

At present the only method available for determining the 3D molecular structure of most biological macromolecules is x-ray crystallography. However, some macro-molecules associate to form large multisubunit complexes (e.g., viruses, ribosomes, multisubunit enzymes) for which crystals suitable for crystallographic studies are not easily obtained. Even in those cases where suitable crystals are available, there remain additional technical problems that will have to be solved before detailed structures can be determined (Yonath and Wittman, 1989). In this chapter I will describe recent structural determinations of noncrystalline biomacromolecular complexes by the technique of electron microscopy in conjunction with 3D recon-struction (electron tomography).

Keywords

Hydrated Cage Bacillus Polypeptide Glutamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arad, T., Piefke, H. S., Weinstein, A., Yonath, A., and Wittman, H. G. (1987). Three-dimensional image reconstruction from ordered arrays of 70S ribosome. Biochimie 69:1001–1006.Google Scholar
  2. Baker, T. S. and Fuller, S. Forthcoming.Google Scholar
  3. Bernabeu, C. and Lake, J. A. (1982). Nascent polypcptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. Proc. Nat. Acad. Sci. USA 79:3111–3115.PubMedCrossRefGoogle Scholar
  4. Berriman, J. and Leonard, K. R. (1986). Methods of specimen thickness determination in electron microscopy. II: Changes in thickness with dose. Ultramicroscopy 19:349–366.PubMedCrossRefGoogle Scholar
  5. Boisset, N., Frank, J., Taveau, J. C., Billiald, P., Motta, G. J., Sizaret, P. Y., and Lamy, J. (1988). Intramolecular localization of epitopes within an oligomeric protein by immunoelectron microscopy and image processing. Proteins Struct. Funct. Genet. 3:161–183.PubMedCrossRefGoogle Scholar
  6. Boisset, N., Wagenknecht, T., Radermacher, M., Frank, J., and Lamy, J. N. (1990). Three-dimensional reconstruction of native Androctonus australis hemocyanin. J. Mol. Biol. 216:743–760.PubMedCrossRefGoogle Scholar
  7. Bommer, U.-A., Lutsch, G., Behlke, J., Stahl, J., Nesytova, N., Henske, A., and Bielka, H. (1988). Shape and location of eukaryotic initiation factor eIF-2 on the 40S ribosomal subunit of rat liver. Eur. J. Biochem. 172:653–662.PubMedCrossRefGoogle Scholar
  8. Boublik, M. and Hellman, W. (1978). Comparison of Artemia salina and Escherichia coli ribosome structure by electron microscopy. Proc. Nat. Acad. Sci. USA 75:2829–2833.CrossRefGoogle Scholar
  9. Capel, M. S., Engelmann, D. M., Freeborn, B. R., Kjeldgaard, M., Langer, J. A., Ramakrishnan, V., Schindler, D. G., Schneider, D. K., Schoenborn, B. P., Sillers, I.-Y., Yabuki, S., and Moore, P. B. (1987). A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 238:1403–1406.Google Scholar
  10. Carazo, J. M., Rivera, J. M., Zapata, E. L., Radermacher, M., and Frank, J. (1990). Fuzzy sets-based classification of electron microscopy images of biological macromolecules with an application to ribosomal particles. J. Microsc. 157:187–203.PubMedCrossRefGoogle Scholar
  11. Carazo, J. M., Wagenknecht, T., and Frank, J. (1989). Variations of the three-dimensional structure of the Escherichia coli ribosome in the range of overlap views: An application of the methods of multi-cone and local single-cone three-dimensional reconstruction. Biophys. J. 55:465–477.PubMedCrossRefGoogle Scholar
  12. Carazo, J. M., Wagenknecht, T., Radermacher, M., Mandiyan, V., Boublik, M., and Frank, J. (1988). Three-dimensional structure of the 50S Escherichia colt ribosomal subunits depleted of proteins L7/L12. J. Mol. Biol. 201:393–404.PubMedCrossRefGoogle Scholar
  13. Crewe, A. V., Crewe, D. A., and Kapp, O. H. (1984). Inexact three-dimensional reconstruction of a biological macromolecule from a restricted number of projections. Ultramicroscopy 13:365–372.PubMedCrossRefGoogle Scholar
  14. Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.- C., Lepault, J., McDowall, A. W., and Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228.PubMedCrossRefGoogle Scholar
  15. Emanuilov, I., Sabatini, D. D., Lake, J. A., and Freienstein, C. (1978). Localization of eukaryotic initiation factor 3 on native small ribosomal subunits. Proc. Nat. Acad. Sci. USA 75:1389–1393.PubMedCrossRefGoogle Scholar
  16. Erdmann, V. A., Wolters, J., Huysmans, E., and De Wachter, R. (1985). Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences. Nucl. AcidS Res. 13:r105–r153.CrossRefGoogle Scholar
  17. Fleischer, S. and lnui, M. (1989). Biochemistry and biophysics of excitation-contraction coupling. Ann. Rev. Biophys. Biophys. Chem. 18:333–364.CrossRefGoogle Scholar
  18. Frank, J. (1980). The role of correlation techniques in computer image processing, in Topics in Current Physics (P. W. Hawkes, ed.), Vol. 13, pp. 187–222. Springer-Verlag, Berlin.Google Scholar
  19. Frank, J. (1989). Image analysis of single macromolecules. Electron Microsc. Rev. 2:53–74.PubMedCrossRefGoogle Scholar
  20. Frank, J. (1990). Classification of macromolecular assemblies studied as “single particles.” Q. Rev. Biophys. 23:281–329.PubMedCrossRefGoogle Scholar
  21. Frank, J., Bretaudiere, J. P., Carazo, J. M., Verschoor, A., and Wagenknecht, T. (1988). Classification of images of biomolecular assemblies: A study of ribosomes and ribosomal subunits of Escherichia coli. J. Microsc. 150:99–115.CrossRefGoogle Scholar
  22. Frank, J., Goldfarb, W., Eisenberg, D., and Baker, T. S. (1978). Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3:283–290.PubMedCrossRefGoogle Scholar
  23. Frank, J. and Radermacher, M. (1986). Three-dimensional reconstruction of nonperiodic macro-molecular assemblies from electron micrographs, in Advanced TechniqueS in Electron Microscopy iII (J. K. Koehler, ed.), pp. 1–72. Springer-Verlag, New York.CrossRefGoogle Scholar
  24. Frank, J., Radermacher, M., Wagenknecht, T., and Verschoor, A. (1988). Studying ribosome structure by electron microscopy and computer image processing. Methods Enzymol. 164:3–35.PubMedCrossRefGoogle Scholar
  25. Frank, J. and van Heel, M. (1982). Correspondence analysis of aligned images of biological particles. J. Mol. Biol. 161:134–137.PubMedCrossRefGoogle Scholar
  26. Frank, J., Verschoor, A., and Boublik, M. (1981). Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214:1353–1355.PubMedCrossRefGoogle Scholar
  27. Frank, J., Verschoor, A., and Boublik, M. (1982). Multivariate statistical analysis of ribosome electron micrographs: L and R lateral views of the 40S subunit from HeLa cells. J. Mol. Biol. 161:107–137.PubMedCrossRefGoogle Scholar
  28. Frank, J., Verschoor, A., Radermacher, M., and Wagenknecht, T. (1990). Morphologies of eubacterial and eucaryotic ribosomes as determined by Three-dimensional electron microscopy, in The Ribosome: Structure, Function and Evolution (W. Hill, A. Dahlberg, R. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner, eds.), pp. 107–113. Am. Soc. Microbiol., Washington DC.Google Scholar
  29. Frank, J., Penczek, P., Grassucci, R., and Srivastava, S. (1991). Three-dimensional reconstruction of the Escherichia coli ribosome in ice: The distribution of ribosomal RNA. J. Cell. Biol. 115:595–605.CrossRefGoogle Scholar
  30. Franzini-Armstrong, C., 1970. Studies of the triad. I: Structure of the junction in frog twitch fibers. J. Cell Biol. 47:488–499.PubMedCrossRefGoogle Scholar
  31. Gaykema, W. P. J., Hol, W. G. J., Vereijken, J. M., Soeter, N. M., Bak, H. J., and Beintema, J. J. (1984). A structure of copper containing oxygen carrier protein Panulirus interruptus hemocyanin. Nature 309:23–29.CrossRefGoogle Scholar
  32. Goncharov, A. B., Vainshtein, B. K., Ryskin, A. I., and Vagin, A. A. (1987). Three-dimensional reconstruction of arbitrarily oriented particles from their electron photomicrographs. Sov. Phys. Crystallogr. 32:504–509.Google Scholar
  33. Gornicki, P., Nurse, K., Hellman, W., Boublik, M., and Ofengand, J. (1984). High resolution localiza-tion of the tRNA anticodon interaction site on the Escherichia coli 30S ribosomal subunit. J. Biol. Chem. 259:10493–10498.PubMedGoogle Scholar
  34. Henderson, R. and Unwin, P. N. T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32.PubMedCrossRefGoogle Scholar
  35. Hoppe, W. (1981). Three-dimensional electron microscopy. Ann. Rev. Biophys. Bioeng. 10:563–592.CrossRefGoogle Scholar
  36. Hoppe, W., Oettl, H., and Tietz, H. R. (1986). Negatively stained 50S ribosomal subunits of Escherichia coli. J. Mol. Biol. 192:291–322.CrossRefGoogle Scholar
  37. Imagawa, T., Smith, J. S., Coronado, R., and Campbell, K. P. (1987). Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca+ +-permeable pore of the calcium release channel. J. Biol. Chem. 262:16636–16643.PubMedGoogle Scholar
  38. Inui, M., Saito, A., and Fleischer, S. (1987). Purification of the ryanodine receptor and identity with feet structures of junctional terminal cysternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262:1740–1747.PubMedGoogle Scholar
  39. Kellenberger, E., Haner, M., and Wurtz, M. (1982). The wrapping phenomenon in air-dried and negatively stained specimens. Ultramicroscopy 9:139–150.PubMedCrossRefGoogle Scholar
  40. Knauer, V., Hegerl, R., and Hoppe, W. (1983). Three-dimensional reconstruction and averaging of 30S ribosomal subunits of Escherichia coli from electron micrographs. J. Mol. Biol. 163:409–430.PubMedCrossRefGoogle Scholar
  41. Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q.-Y., and Meissner, G. (1988). Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331:315–319.PubMedCrossRefGoogle Scholar
  42. Lake, J. A. (1976). Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. J. Mol. Biol. 105:131–159.PubMedCrossRefGoogle Scholar
  43. Lake, J. A. (1985). Evolving ribosome structure: Domains in archaebacteria, eubacteria, eocytes and eukaryotes. Ann. Rev. Biochem. 54:507–530.PubMedCrossRefGoogle Scholar
  44. Lamy, J., Bijlholt, M. M. C., Sizaret, P. Y., Lamy, J. N., van Bruggen, E. F. J. (1981). Quaternary struc-ture of scorpion (Androctonus australis) hemocyanin: localization of subunits with immunological and electron microscopy. Biochemistry 20:1849–1856.PubMedCrossRefGoogle Scholar
  45. Lamy, J. N., Lamy, J., Billiald, P., Sizaret, P. Y., Cave, G., Frank, J., and Motta, G. (1985a). An approach to direct intramolecular localization of antigenic determinants in Androctonus australiS hemocyanin with monoclonal antibodies by molecular immunoelectron microscopy. Biochemistry 24:5532–5542.PubMedCrossRefGoogle Scholar
  46. Lamy, J. N., Lamy, J., Sizaret, P. Y., Billiald, P., and Motta, G. (1985b). Quaternary structure of arthropod hemocyanin, in Respiratory Pigments in Animals, Structure-Function Relations (J. N. Lamy, J. P. Truchot, and R. Gille, eds.), pp. 73–86. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  47. Lepault, J., Booy, F. P., and Dubochet, J. (1983). Electron microscopy of frozen biological suspensions. J. Microsc. 129:89–102.PubMedCrossRefGoogle Scholar
  48. Liljas, A. (1982). Structural studies of ribosomes. Progr. Biophys. Molec. Biol. 40:161–228.CrossRefGoogle Scholar
  49. Liu, Q.-Y., Lai, F. A., Rousseau, E., Jones, R. V., and Meissner, G. (1989). Multiple conductance states of the purified calcium release channel complex from skeletal sarcoplasmic reticulum. Biophys. J. 44:415–424.CrossRefGoogle Scholar
  50. Lutsch, G., Benndorf, R., Westermann, P., Behlke, J., Bommer, U.-A., Bielka, H. (1985). On the structure of native small ribosomal subunits and initiation factor eIF-3 isolated from rat liver. Biomed. Biochim. Acta 44:Kl–K7.Google Scholar
  51. Milligan, R. A. and Unwin, P. N. T. (1986). Location of exit channel for nascent protein in 80S ribosome. Nature 319:693–695.PubMedCrossRefGoogle Scholar
  52. Moller, W. and Maassen, J. A. (1986). On the structure, function, and dynamics of L7/L12 from Escherichia coli ribosomes, in Structure, Function and Genetics of Ribosomes (B. Hardesty and G. Kramer, eds.), pp. 309–325. Springer-Verlag, New York.CrossRefGoogle Scholar
  53. Noller, H. F. (1984). Structure of ribosomal RNA, Ann. Rev. Biochem. 53:119–162.PubMedCrossRefGoogle Scholar
  54. Oakes, M., Henderson, E., Scheinman, A., Clark, M., and Lake, J. A. (1986). Ribosome structure, func-tion, and evolution: Mapping ribosomal RNA, proteins, and functional sites in three dimensions, in Structure, Function and Genetics of Ribosomes (B. Hardesty and G. Kramer, eds.), pp. 47–67. Springer-Verlag, New York.CrossRefGoogle Scholar
  55. Oettl, H., Hegerl, R., and Hoppe, W. (1983). Three-dimensional reconstruction and averaging of 50S ribosomal subunits of Escherichia coli from electron micrographs. J. Mol. Biol. 163:431–450.PubMedCrossRefGoogle Scholar
  56. Penczek, P., Srivastava, S., and Frank, J. (1990). The structure of the 70E E. coli ribosome in ice, in Proc. XIIth Int. Congr. for Electron Microscopy (L. D. Peachey and D. B. Williams, eds.), pp. 506–507. San Francisco Press, San Francisco.Google Scholar
  57. Provencher, S. W. and Vogel, R. H. (1988). Three-dimensional reconstruction from electron micrographs of disordered specimens. I: Method, Ultramicroscopy 25:209–222.PubMedCrossRefGoogle Scholar
  58. Radermacher, M. (1988). Three-dimensional reconstruction of single particles from random and non-random tilt series. J. Electron Microsc. Tech. 9:359–394.PubMedCrossRefGoogle Scholar
  59. Radermacher, M., Wagenknecht, T., Grassucci, R., Frank, J., Saito, A., Inui, M., Chadwick, C., Reif, S., and Fleischer, S. (1990). Native architecture of the calcium channel/foot structure from skeletal muscle. Biophys. J. 57:501a.Google Scholar
  60. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1987a). Three-dimensional structure of the large ribosomal subunit from Escherichia coli. EMBO J. 6:1107–1114.Google Scholar
  61. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1987b). Three-dimensional reconstruction from single-exposure random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146:113–136.CrossRefGoogle Scholar
  62. Ryabova, L. A., Selivanova, O. M., Barabov, V. I., Vasiliev, V. D., and Spirin, A. S. (1988). Does the channel for nascent peptide exist inside the ribosome? FEBS Lett. 226:255–260.PubMedCrossRefGoogle Scholar
  63. Saxton, W. O. and Baumeister, W. (1982). The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127:127–138.PubMedCrossRefGoogle Scholar
  64. Srere, P. A. (1987). Complexes of sequential metabolic enzymes. Ann. Rev. Biochemistry 56:89–124.CrossRefGoogle Scholar
  65. Smith, J. S., Imagawa, T., Ma, J., Fill, M., Campbell, K. P., and Coronado, R. (1988). Purified ryanodine receptor from rabbit skeletal muscle is calcium-release channel of sarcoplasmic reticulum. J. Gen. Physiol. 92:1–26.Google Scholar
  66. Spirin, A. S. (1983). Location of tRNA on the ribosome. FEBS (Fed. Eur. Biochem. Soc.) Lett. 156:217–221.CrossRefGoogle Scholar
  67. Stewart, M. (1988). Computer image processing of electron micrographs of biological structures with helical symmetry. J. Electron Microsc. Tech. 9:325–358.PubMedCrossRefGoogle Scholar
  68. Stöffler, G. and Stöfiler-Meilicke, M. (1983). The ultrastructure of macromolecular complexes studied with antibodies, in Modern Methods in Protein Chemistry (H. Tschesche, ed.), pp. 409–455. de Gruyter, New York.Google Scholar
  69. Stöfller, G. and Stöffler-Meilicke, M. (1986). Immunoelectron microscopy of Escherichia coli ribosomes, in Structure, Function and Genetics of Ribosomnes (B. Hardesty and G. Kramer, eds.), pp. 28–46. Springer-Verlag, New York.CrossRefGoogle Scholar
  70. Stöffler, G. and Stöffler-Meilicke, M. (1988). Localization of ribosomal proteins on the surface of ribosomal subunits from Escherichia coli using immunoelectron microscopy. Methods Enzymol. 164:503–520.PubMedCrossRefGoogle Scholar
  71. Taylor, K. A. and Glaeser, R. M. (1976). Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55:448–456.PubMedCrossRefGoogle Scholar
  72. Tischendorf, G. W., Zeichhardt, H., and Stöfller, G. (1974). Determination of the location of proteins L14 L17, L18, L19, L22, L23 on the surface of the 50S ribosomal subunit of Escherichia coli by immune electron microscopy. Mol. Gen. Genet. 134:187–208.PubMedCrossRefGoogle Scholar
  73. Traut, R. R., Tewari, D. S., Sommer, A., Gavino, G. R., Olson, H. M., and Glitz, D. G. (1986). Protein topography of ribosomal functional domains: effects of monoclonal antibodies to different epitopes in Escherichia coli protein L7/L12 on ribosome function and structure, in Structure, Function and Genetics of Ribosomes (B. Hardesty and G. Kramer, eds.), pp. 286–308. Springer-Verlag, New York.CrossRefGoogle Scholar
  74. Unser, M., Trus, B. L., and Steven, A. C. (1987). A new resolution criterion based on spectral signal-to-noise ratio. Ultramicroscopy 23:39–52.PubMedCrossRefGoogle Scholar
  75. Unser, M., Trus, B. L., and Steven, A. C. (1989). Normalization procedures and factorial representations for classifications of correlation-aligned images: a comparative study. Ultramicroscopy 30:299–310.PubMedCrossRefGoogle Scholar
  76. Unwin, P. N. T. (1977). Three-dimensional model of membrane-bound ribosomes obtained by electron microscopy. Nature 269:118–122.PubMedCrossRefGoogle Scholar
  77. Unwin, P. N. T. and Ennis, P. D. (1984). Two configurations of a channel-forming membrane protein. Nature 307:609–613.PubMedCrossRefGoogle Scholar
  78. Unwin, P. N. T., Toyoshima, C., and Kubalek, E. (1988). Arrangement of the acetylcholine receptor sub-units in the resting and desensitized states determined by cryoelectron microscopy of crystallized torpedo postsynaptic membranes. J. Cell Biol. 107:1123–1138.PubMedCrossRefGoogle Scholar
  79. van Heel, M. (1983). Three-dimensional reconstruction of the 30S E. coli ribosomal subunit, in Proc. 41st Ann. Meet. Electron Microsc. Soc. Am. (G. W. Bailey, ed.), pp. 460–461. San Francisco Press.Google Scholar
  80. van Heel, M. (1984). Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy 13:165–184.PubMedCrossRefGoogle Scholar
  81. van Heel, M. (1987). Angular reconstitution: a posteriori assignment of projection directions for 3D reconstructions. Ultramicro.scopy 21:111–124.CrossRefGoogle Scholar
  82. van Heel, M. and Frank, J. (1981). Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy 6:187–194.PubMedGoogle Scholar
  83. van Heel, M., Keegstra, W., Schutter, W., and van Bruggen, E. F. (1982). In The Structure and Function of Invertebrate Respiratory Proteins, Life Chemistry Reports, Suppl. 1 (E. J. Wood, ed.), EMBO Workshop Leeds, pp. 69–73.Google Scholar
  84. van Heel, M. and Stöfller-Meilicke, M. (1985). Characteristic views of E. coli and B. Stearothermophilus 30S ribosomal subunits in the electron microscopy. EMBO J. 4:2389–2395.PubMedGoogle Scholar
  85. Vasiliev, V. D., Selivanova, O. M., Baranov, V. I., and Spirin, A. J. (1983). Structural study of translating 40S ribosomes from Escherichia coli. J. Electron Microsc. 155:167–172.Google Scholar
  86. Verschoor, A. (1989). Morpho-structural Studies of the Eukaryotic Ribosome: Three-Dimensional Reconstructions from Single-Particle Electron Microscopic Specimens, Ph.D. thesis, State University of New York at Albany, Albany, NY.Google Scholar
  87. Verschoor, A. and Frank, J. (1990). Three-dimensional structure of the mammalian cytoplasmic ribosome. J. Mol. Biol. 214:737–749.PubMedCrossRefGoogle Scholar
  88. Verschoor, A., Frank, J., Radermacher, M.. Wagenknecht, T., and Boublik, M. (1984). Three-dimen-sional reconstruction of the 30S ribosomal subunit from randomly oriented particles. J. Mol. Biol. 178:677–698.PubMedCrossRefGoogle Scholar
  89. Verschoor, A., Frank, J., Wagenknecht, T., and Boublik, M. (1986). Computer-averaged views of the 70S monosome from Escherichia coli. J. Mol. Biol. 187:581–590.CrossRefGoogle Scholar
  90. Verschoor, A., Zhang, N. Y., Wagenknecht, T., Obrig, T., Radermacher, M., and Frank, J. (1989). Three-dimensional reconstruction of mammalian 40S ribosomal subunit. J. Mol. Biol. 209:115–126.PubMedCrossRefGoogle Scholar
  91. Vigers, G. P. A., Crowther, R. A., and Pearse, B. M. F. (1986a). Three-dimensional structure of clathrin cages in ice. EMBO J. 5:529–534.PubMedGoogle Scholar
  92. Vigers, G. P. A., Crowther, R. A., and Pearse, B. M. F. (1986b). Location of the 100 kD-50 kD accessory proteins in clathrin coats. EMBO J. 5:2079–2085.PubMedGoogle Scholar
  93. Vogel, R. H. and Provencher, S. W. (1988). Three-dimensional reconstruction from electron micrographs of disordered specimens. II: Implementation of results. Ultramicroscopy 25:223–240.PubMedCrossRefGoogle Scholar
  94. Wagenknecht, T., Carazo, J. M., Radermacher, M., and Frank, J. (1989a). Three-dimensional reconstruction of the ribosome from Escherichia coli. Biophys. J. 55:455–464.CrossRefGoogle Scholar
  95. Wagenknecht, T., Frank, J., Boublik, M., Nurse, K., and Ofengand, J. (1988b). Direct localization of the tRNA-anticodon interaction site on the Escherichia coli 30S ribosomal subunit by electron microscopy and computerized image averaging. J. Mol. Biol. 203:753–760.Google Scholar
  96. Wagenknecht, T., Grassucci, R., and Frank, J. (1988a). Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. J. Mol. Biol. 199:137–147.CrossRefGoogle Scholar
  97. Wagenknecht, T., Grassucci, R., Frank, J., Saito, A., Inui, M., and Fleischer, S. (1989b). Three-dimen-sional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338:167–170.PubMedCrossRefGoogle Scholar
  98. Wittman, H. G. (1983). Architecture of prokaryotic ribosomes. Ann. Rev. Biochem. 52:35–65.CrossRefGoogle Scholar
  99. Wittman-Liebold, B. (1984). Primary structure of Escherichia coli ribosomal proteins. Adv. Prot. Chem. 36:56–78.Google Scholar
  100. Yonath, A., Leonard, K. R., and Wittman, G. H. (1987). A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236:813–816.PubMedCrossRefGoogle Scholar
  101. Yonath, A. and Wittman, H. G. (1989). Challenging the three-dimensional structure of ribosomes. Trends Biochem. Sci. 14:329–335.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Terence Wagenknecht
    • 1
    • 2
  1. 1.Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA
  2. 2.Department of Biomedical Sciences, School of Public HealthState University of New York at AlbanyAlbanyUSA

Personalised recommendations