Advertisement

The Organization of Chromosomes and Chromatin

  • Christopher L. Woodcock

Abstract

The eukaryotic nucleus and its components are, in principle, ideal subjects for tomographic structural analysis. Within the nucleus, a number of crucial and closely regulated processes occur. These include DNA replication and chromatin assembly, RNA transcription, the processing and transport of mRNA and rRNA, and chromosome condensation and decondensation. Many of these events have been studied in detail at the molecular level, yet very little is known about the three-dimensional (3D) spatial framework within which they occur. Electron tomography offers direct insight into these structural and functional aspects of nuclear organization.

Keywords

Tilt Angle Nucleosome Position Tomographic Reconstruction Chromatin Fiber Transcription Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph, K. W. (1980). Organization of chromosomes in mitiotic HeLa cells. Exp. Cell Res. 125:95–103.PubMedCrossRefGoogle Scholar
  2. Bahr, G. F. and Golomb, H. M. (1971). Karyotyping of single human chromosomes from dry mass determined by electron microscopy. Proc. Nat. Acad. Sci. USA 68:726–730.PubMedCrossRefGoogle Scholar
  3. Baumeister, W., Barth, M., Hegerl, R., Guckenberger, R., Hahn, M., and Saxton, W. O. (1986). Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J. Mol. Biol. 187:241–253.CrossRefGoogle Scholar
  4. Berriman, J. and Leonard, K. R. (1986). Methods for specimen thickness determination in electron microscopy. II:Changes in thickness with dose. Ultramicroscopy 19:349–366.PubMedCrossRefGoogle Scholar
  5. Belmont, A. S., Sedat, J. W., and Agard, D. A. (1986). A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J. Cell Biol., 105:77–92.CrossRefGoogle Scholar
  6. Borland, L., Harauz, G., Bahr, G., and van Heel, M. (1988). Packing of the 30 nm chromatin fiber in the human metaphase chromosome. Chromosomo (Berl) 97:159–163.CrossRefGoogle Scholar
  7. Collieux, C., Mory, C., Olins, A. L., Olins, D. E., and Tence, M. (1989). Energy filtered STEM imaging of thick biological sections. J. Microsc. 153:1–21.CrossRefGoogle Scholar
  8. Crowther, R. A., DeRosier, D. J., and Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. London A 317:319–340.CrossRefGoogle Scholar
  9. Derenzini, M., Viron, A., and Puvion-Dutilleul, F. (1982). The Feulgen-like osmium-ammine reaction as a tool to investigate chromatin structure in thin sections. J. Ultrastruct. Res. 80:133–147.PubMedCrossRefGoogle Scholar
  10. Dover, S. D., Elliott, A., and Kernagam, A. K. (1981). Three-dimensional reconstruction from images of tilted specimens: the paramyosin filament. J. Microsc. 122:23–33.PubMedCrossRefGoogle Scholar
  11. DuPraw, E. J. (1965). Macromolecular organization of nuclei and chromosomes: a folded fibre model based on whole mount electron microscopy. Nature 206:338–343.PubMedCrossRefGoogle Scholar
  12. Earnshaw, W. C. and Laemmli, U. K. (1983). Architecture of metaphase chromosomes and chromosome scaffolds. J. Cell Biol. 96:84–93.PubMedCrossRefGoogle Scholar
  13. Eickbusch, T. H. and Moudrianakis, E. N. (1978). The compaction of DNA helices into either continuous supercoils or folded fiber rods and toroids. Cell 13:295–306.CrossRefGoogle Scholar
  14. Felsenfeld, G. and McGhee, J. D. (1986). Structure of the 30 nm chromatin fiber. Cell 44:375–377.PubMedCrossRefGoogle Scholar
  15. Flannigan, D. and Harauz, G. (1989). Three-dimensional reconstruction of a polytene chromosome segment from Drosophila melanogaster, in Proc. Microscopical Soc. Canada, Vol. XVI, pp. 90–91.Google Scholar
  16. Frank, J., McEwen, B. F., Radermacher, M., Turner, J. N., and Rieder, C. L. (1987). Three-dimensional tomographic reconstruction in high voltage electron microscopy. J. Electron Microsc. Tech. 6:193–205.CrossRefGoogle Scholar
  17. Frank, J. and Radermacher, M. (1986). Three-dimensional reconstruction of non-periodic macro-molecular assemblies from electron micrographs, in Advanced Techniques in Biological Electron Microscopy (J. Koehler, ed.), pp. 1–72. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  18. Frank, J., Shimkin, B., and Dowse, H. (1981). SPIDER–a modular software system of electron microscopy image processing. Ultramicroscopy 6:343–358.Google Scholar
  19. Gordon, R. and Herman, G. T. (1974). Three dimensional reconstruction from projections: a review of algorithms, Int. Rev. Cytol. 38:111–151.PubMedCrossRefGoogle Scholar
  20. Graziano, V., Gerchman, S. E., and Ramakrishnan, V. (1988). Rcconstitution of chromatin higher order structure from histone H5 and dcpleted chromatin, J. Mol. Biol. 203:997–1007.PubMedCrossRefGoogle Scholar
  21. Guckenberger, R. (1982). Determination of the common origin in the micrographs of tilt series in three-dimensional electron microscopy, Ultramicroscopy 9:167, 174.Google Scholar
  22. Harauz, G., Borland, L., Bahr, G. F., Zeitler, E., and van Heel, M. (1987). Three-dimensional reconstruction of a human metaphase chromosome from electron micrographs, Chromosoma 95:366–374.PubMedCrossRefGoogle Scholar
  23. Harauz, G. and van Heel, M. (1986). Exact filters for general geometry three dimensional reconstruction, Optik 73:146–156.Google Scholar
  24. Hiraoka, Y., Sedat, J. W., and Agard, D. A. (1987). The use of a charge-coupled device for quantitative optical micro scopy of biological structures, Science 238:3 6–41.Google Scholar
  25. Horowitz, R. A., Giannasca, P. J., and Woodcock, C. L. (1990). Ultrastructural preservation of chromatin and nuclei: improvement with low temperature methods, J. Microsc. 157:205–224.PubMedCrossRefGoogle Scholar
  26. Horowitz, R. A., Woodcock, C. L., Belmont, A. W., and Agard, D. A. (1988). 3D reconstruction of chromatin fibers in freeze-substituted nuclei. J. Cell Biol. 107:313a.Google Scholar
  27. Hutchison, N. and Weintraub, W. (1985). Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei, Cell 13:471–482.CrossRefGoogle Scholar
  28. Jesior, J-C. (1982). The grid sectioning technique: a study of catalase crystals, EMBO J. 1:1423–1428.PubMedGoogle Scholar
  29. Kellenberger, E. (1987). The compactness of cellular plasmas; in particular, chromatin compactness in relation to function, TIBS 12:105–107.Google Scholar
  30. Kiselev, N. A., Sherman, M. B., and Tsuprun, V. L. (1990). Negative staining of proteins. Electron Microsc. Rev. 3:43–72.PubMedCrossRefGoogle Scholar
  31. Klug, A. and Crowther, R. A. (1972). Three-dimensional image reconstruction from the viewpoint of information theory. Nature 238:435–440.CrossRefGoogle Scholar
  32. Langmore, J. P. and Paulson, J. R. (1983). Low-angle X-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes. J. Cell Biol. 96:1120–1131.PubMedCrossRefGoogle Scholar
  33. Langmore, J. P. and Schutt, C. (1980). The higher order structure of chicken erythrocyte chromosomes in vivo. Nature (London), 288:620–622.CrossRefGoogle Scholar
  34. Lawrence, M. C., Jaffer, M. A., and Sewell, B. T. (1989). The application of the maximum entropy method to electron microscopic tomography. Ultramicroscopy 31:285–302.PubMedCrossRefGoogle Scholar
  35. Levy, H. A., Margle, S. M., Tinnell, E. P., Durfee, R. C., Olins, D. E., and Olins, A. L. (1987). The varifocal mirror for 3-D display of electron microscope tomography. J. Microsc. 145:179–190.PubMedGoogle Scholar
  36. Luther, P. K., Lawrence, M. C., and Crowther, R. A. (1988). A method for monitoring the collapse of plastic sections as a function of electron dose. Ultrannicroscopy 24:7–18.CrossRefGoogle Scholar
  37. McDowall, A. W., Smith, J. M., and Dubochet, J. (1986). Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J. 5:1395–1402.PubMedGoogle Scholar
  38. Marsden, M. P. F. and Laemmli, U. K. (1979). Metaphase chromosome structure: evidence for a radial loop model. Cell 17:849–858.PubMedCrossRefGoogle Scholar
  39. Mehlin, H., Lonnroth, A., Skoglund, U., and Daneholt, B. (1988). Structure and transport of a specific premessenger RNP particle Cell Biol. Int. Rep. 12:729–736.PubMedCrossRefGoogle Scholar
  40. Miller, O. L. Jr., and Bakken, A. H. (1972). Morphological studies on transcription Acta Endocrinol. Suppl. 168:155–177.Google Scholar
  41. Olins, A. L. (1986). Electron microscope tomography: 3-D reconstruction of asymmetric structures, in Proc. 44th Ann. Mg. Electron Microscop. Soc. America (G. W. Bailey, ed.), pp. 22–25. San Francisco Press, San Francisco.Google Scholar
  42. Olins, A. L., Moyer, B., Sook-Hui, K., and Allison, D. P. (1989b). Synthesis of a more stable osmium ammine electron-dense DNA stain. J. Histochem. Cytochem. 37:395–398.PubMedCrossRefGoogle Scholar
  43. Olins, A. L., and Olins, D. E. (1974). Spheroid chromatin units (nu bodies). Science 183:330–332.PubMedCrossRefGoogle Scholar
  44. Olins, A. L., Olins, D. E., and Franke, W. W. (1980). Stereo-electron microscopy of nucleoli, Balbiani rings and endoplasmic reticulum in Chironomus salivary gland cells. Eur. J. Cell Biol. 22:714–723.PubMedGoogle Scholar
  45. Olins, A. L., Olins, D. E., and Lezzi, M. (1982). Ultrastructural studies of Chironomus salivary gland cells in different states of Balbiani ring activity. Eur. J. Cell Biol. 27:161–169.PubMedGoogle Scholar
  46. Olins, A. L., Olins, D. E., Levy, H. A., Durfee, R. C., Margle, S. M., and Tinnell, E. P. (1986). DNA compaction during intense transcription measured by electron microscope tomography. Eur. J. Cell Biol. 40:105–110.PubMedGoogle Scholar
  47. Olins, A. L., Olins, D. E., Levy, H. A., Durfee, R. C., Margle, S. M., Tinnell, E. P., Hingerty, B. E., Dover, S. D., and Fuchs, H. (1984). Modeling balbiani ring gene transcription with electron microscope tomography. Eur. J. Cell Biol. 35:129–142.PubMedGoogle Scholar
  48. Olins, A. L., Olins, D. E., Levy, H. A., Margle, S. M., Tinnell, E. P., and Durfee, R. C. (1989a). Tomographic reconstructions from energy-filtered images of thick biological sections. J. Microsc. 154:257–265.PubMedCrossRefGoogle Scholar
  49. Olins, D. E., Olins, A. L., Levy, H. A., Durfee, R. C., Margle, S. M., Tinnell, E. P., and Dover, S. D. (1983). Electron microscope tomography: transcription in three dimensions. Science 220:498–500.PubMedCrossRefGoogle Scholar
  50. Ottensmeyer, F. P. (1986). Elemental mapping by energy filtration: advantages, limitations, com-promises. Ann. NY Acad. Sci. 483:339–353.PubMedCrossRefGoogle Scholar
  51. Paulson, J. R. and Laemmli, U. K. (1977). The structure of histone depleted chromosomes. Cell 12:817–818.PubMedCrossRefGoogle Scholar
  52. Peii, T. and Lim, J. S. (1982). Adaptive filtering for image enhancement. Opt. Eng. 21:108–112.Google Scholar
  53. Radermacher, M. (1980). Dreidiniensionale Rekonstruktion bet kegetformiger Kippung im Elektronen-mikroskop. Ph.D. thesis, Technical University Munich.Google Scholar
  54. Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1986). A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli. J. Microsc. 141:RP1–RP2.Google Scholar
  55. Ramachandran, G. N. and Lakshminarayanan, A. V. (1971). Three dimensional reconstruction from radiographs and electron micrographs: applications of convolutions instead of Fourier transforms. Proc. Nat. Acad. Sci. USA 68:2236–2240.PubMedCrossRefGoogle Scholar
  56. Rattner, J. B. and Lin, C. C. (1985). Radial loops and helical coils coexist in metaphase chromosomes. Cell 42:291–296.PubMedCrossRefGoogle Scholar
  57. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D., and Klug, A. (1984). Structure of the nucleosome core particle at 7A resolution. Nature (London) 311:532–537.CrossRefGoogle Scholar
  58. Ruiz-Carrillo, A., Puigdomench, P., Eder, G., and Lurz, R. (1980). Stability and reversibility of higher ordered structures of interphase chromatin: continuity of DNA is not required for maintenance of folded structure. Biochemistry 19:2544–2554.PubMedCrossRefGoogle Scholar
  59. Sedat, J. and Manueledis, L. (1978). A direct approach to the architecture of eukaryotic chromosomes. Symp. Quant. Biol. Cold Spring Harbor 42:331–350.CrossRefGoogle Scholar
  60. Skoglund, U., Anderson, K., Bjorkroth, B., Lamb, M. M., and Dancho, B. (1983). Visualization of the formation and transport of a specific hnRNP particle. Cell 34:847–855.PubMedCrossRefGoogle Scholar
  61. Skoglund, U., Andersson, K., Strandberg, B., and Daneholt, B. (1986). Three-dimensional structure of a specific pre-messenger RNP particle established by electron microscope tomography. Nature (London) 319:560–564.CrossRefGoogle Scholar
  62. Subirana, J. A., Munoz-Guerra, S., Aymami, J., Radermacher, M., and Frank, J. (1985). The layered organization of nucleosomes in 30 nm chromatin fibers. Chromosoma 91:377–390.PubMedCrossRefGoogle Scholar
  63. Subirana, J. A., Munoz-Guerra, S., Radermacher, M., and Frank, J. (1983). Three dimensional reconstruction of chromatin fibers, J. Biomol. Struct. Dyn. 1:705–714.PubMedCrossRefGoogle Scholar
  64. Thoma, F., Koller, T., and Klug, A. 1979. The salt-dependent superstructures of chromatin, and involve-ment of histone H1. J. Cell Biol. 83:403–427.PubMedCrossRefGoogle Scholar
  65. Tieman, D. G., Murphey, R. K., Schmidt, J. T., and Tieman, S. B. (1986). A computer-assisted video technique for preparing high resolution pictures and stereograms from thick sections. J. Neurol. Methods 17:231–245.CrossRefGoogle Scholar
  66. van Heel, M. and Harauz, G. (1986). Resolution criteria for three dimensional reconstruction, Optik 73:119–122.Google Scholar
  67. van Heel, M. and Keegstra, W. (1981). IMAGIC: a fast, flexible, and friendly image analysis software system, Ultramicroscopy 7:113–130.CrossRefGoogle Scholar
  68. Van Holde, K. E. (1989). Chromatin. Springer-Verlag, N.Y.CrossRefGoogle Scholar
  69. Williams, S. P., Athey, B. D., Muglia, L. J., Schappe, R. S., Gough, A. H., and Langmore, J. P. (1986). Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys. J. 49:223–235.Google Scholar
  70. Woodcock, C. L. F., Frado L-L, Y., and Rattner, J. B. (1984). The higher order structure of chromatin: evidence for a helical ribbon arrangement. J. Cell Biol. 99:42–52.PubMedCrossRefGoogle Scholar
  71. Woodcock, C. L. F. and Horowitz, R. A. (1986). Helical chromatin fibers in situ and after negative staining. J. Cell Biol. 103:41a.Google Scholar
  72. Woodcock, C. L., Horowitz, R. A., Bazett-Jones, D. A., and Olins, A. L. (1990a). Localization of DNA in chromatin using electron spectroscopic imaging and osmium ammine staining, in Proc. XII Int. Congr. Electron Microscopy, pp. 116–117. San Francisco Press.Google Scholar
  73. Woodcock, C. L. and McEwen, B. F. (1988a). 3-D structure of negatively stained chromatin fibers, in Proc. 46th Ann. Mg. Electron Microsc. Soc. America (G. W. Bailey, ed.), pp. 168–168. San Francisco Press, San Francisco.Google Scholar
  74. Woodcock, C. L. and McEwen, B. F. (1988b). Three dimensional reconstructions of negatively stained chromatin fibers. J. Cell Biol. 107:312a.Google Scholar
  75. Woodcock, C. L. F., Safer, J. P., and Stanchfield, J. E. (1976). Structural repeating units in chromatin. I Evidence for their general occurrence. Exp. Cell Res. 97:101–110.PubMedCrossRefGoogle Scholar
  76. Woodcock, C. L., McEwen, B. F., and Frank, J. (1990b). Ultrastructure of chromatin. II 3D recon-struction of isolated fibers. J. Cell Sci. 99:107–114.Google Scholar
  77. Wurtz, T., Lonnroth, A., Ovchinnikov, L., Skoglund, U., and Daneholt, B. (1990). Isolation and partial characterization of a specific premessenger ribonucleoprotein particle. Proc. Nat. Acad. Sci. USA 87:831–835.PubMedCrossRefGoogle Scholar
  78. Zatsepina, O. V., Polyakov, V. U., and Chentsov, Y. S. (1983). Chromonema and chromomere-structural units of mitotic and interphase chromosomes. Chromosoma 88:91–97.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Christopher L. Woodcock
    • 1
  1. 1.Department of Zoology and Program in Molecular and Cellular BiologyUniversity of MassachusettsAmherstUSA

Personalised recommendations