Advertisement

Three-Dimensional Reconstructions of Organelles and Cellular Processes

  • Bruce F. McEwen

Abstract

In the field of structural biology, the size of a structure often dictates the approach that must be used to study it. This is true for the three-dimensional (3D) reconstruction studies described in this chapter, which include the cilium, the kinetochore, sites of vertebrate calcification, the dendrite, the Golgi apparatus, patch-clamped membranes, and puff ball spores. All of these structures, as well as most of those discussed in Chapter 14, have diameters or thicknesses ranging from about 0.1 to 5.0 microns. The methodology used to compute these 3D reconstructions is quite different from the one used for the smaller and less complex structures described in Chapter 15. The size difference between the two groups of structures is illustrated in Fig. 1, where the 3D reconstructions of a cilium and a 50S ribosomal subunit are shown side by side on the same scale. Note that the cilium is in fact the smallest object considered in the present chapter. This size difference has two important consequences for the 3D reconstruction problem: (1) Generally, the individual specimens of the larger objects are not identical while those of smaller objects often are; and (2) the larger objects have a greater structural complexity at the limiting resolution level.

Keywords

Tomographic Reconstruction High Voltage Electron Microscopy Shade Surface Outer Plate Radial Spoke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afzelius, B. (1959). Electron microscopy of the sperm tail: Results obtained with a new fixative. J. Biophys. Biochem. Cytol. 5:269–278.PubMedCrossRefGoogle Scholar
  2. Allen, R. D. (1968). A reinvestigation of cross-sections of cilia. J. Cell Biol. 37:825–831.PubMedCrossRefGoogle Scholar
  3. Amos, L. A. and Klug, A. (1974). Arrangement of subunits in flagellar microtubules. J. Cell Sci. 14:523–549.PubMedGoogle Scholar
  4. Avolio, J., Lebduska, S., and Satir, P. (1984). Dynein arm substructure and the orientation of arm-microtubule attachments. J. Mol. Biol. 173:389–401PubMedCrossRefGoogle Scholar
  5. Barnard, D. P., McEwen, B. F., Frank, J., and Turner, J. N. (forthcoming). An unlimited-tilt stage for the high-voltage electron microscope.Google Scholar
  6. Baumeister, W., Barth, M., Hegerl, R., Guckenberger, R., Hahn, M., and Saxton, W. O. (1986). Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J. Mol. Biol. 187:241–253.CrossRefGoogle Scholar
  7. Brenner, S., Pepper, D., Berns, M. W., Tan, E., and Brinkley, B. R. (1981). Kinetochore structure, dublication and distribution in mammalian cells: Analysis by human autoantibodies from scleroderma patients. J. Cell Biol. 91:95–102.PubMedCrossRefGoogle Scholar
  8. Brinkley, B. R. and Stubblefield, E. (1966). The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19:28–43.PubMedCrossRefGoogle Scholar
  9. Brinkley, B. R. and Stubblefield, E. (1970). Ultrastructure and interaction of the kinetochore and centriole in mitosis and meiosis. Adv. Cell Biol. 1:119–185.CrossRefGoogle Scholar
  10. Brinkley, B. R., Valdivia, M. M., Tousson, A., and Balczon, R. D. (1989). The kinetochore: Structure and molecular organization, in Mitosis: Molecules and Mechanisms (J. S. Hyams and B. R. Brinkley, eds.), pp. 77–118. Academic Press, New York.Google Scholar
  11. Brokaw, C. J. (1965). Non-sinusoidal bending waves of sperm flagella. J. Exp. Biol. 43:155–169.PubMedGoogle Scholar
  12. Brokaw, C. J. (1983). The constant curvature model for flagellar bending patterns. J. Submicrosc. Cytol. 15:5–8.Google Scholar
  13. Comings, D. E. and Okada, T. A. (1971). Fine structure of kinetochore in Indian Muntjac. Exp. Cell Res. 67:97–110.PubMedCrossRefGoogle Scholar
  14. Crowther, R. A., DeRosier, D. J., and Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. London A 317:319–340.CrossRefGoogle Scholar
  15. Ellisman, M. H., Lindsey, J. D., Carragher, B. O., Kiyonaga, S. H., McEwen, L. R., and McEwen, B. F. (1990). Three-dimensional tomographic reconstructions of components of the Golgi apparatus imaged by selective staining and high voltage electron microscopy. J. Cell Biol. 111:199a.Google Scholar
  16. Fawcett, D. W. and Porter, K. R. (1954). A study of the fine structure of ciliated epithelia. J. Morphol. 94:221–281.CrossRefGoogle Scholar
  17. Frank, J., McEwen, B., Radermacher, M., Turner, J. N., and Rieder, C. L. (1986). Three-dimensional tomographic reconstruction in high voltage electron microscopy, in Proc. XIth Int. Congr. on Electron Microsc., pp. 1145–1150.Google Scholar
  18. Frank, J., McEwen, B. F., Radermacher, M., Turner, J. N., and Rieder, C. L. (1987). Three-dimensional tomographic reconstruction in high voltage electron microscopy. J. Electron Microsc. Tech. 6:193–205.CrossRefGoogle Scholar
  19. Gibbons, I. R. (1981). Cilia and flagella of eukaryotes. J. Cell Biol. 91:107s–124s.CrossRefGoogle Scholar
  20. Gibbons, I. R. and Grimstone, A. V. (1960). On flagellar structure in certain flagellates. J. Biophys. Biochem. Cytol. 7:697–716.PubMedCrossRefGoogle Scholar
  21. Glimcher, M. J. and Krane, S. M. (1968). The organization and structure of bone, and the mechanism of calcification, in A Treatise on Collagen Biology (G. N. Ramachandran and B. S. Gould, eds.), pp. 68–251. Academic Press, New York.Google Scholar
  22. Goodenough, U. W. and Heuser, J. E. (1984). Structural composition of purified dynein proteins with in situ dynein arms. J. Mol. Biol. 180:1083–1118.PubMedCrossRefGoogle Scholar
  23. Goodenough, U. W. and Heuser, J. E. (1985). Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella. J. Cell Biol. 100:2008–2018.PubMedCrossRefGoogle Scholar
  24. Gorbsky, G. J., Sammak, P. J., and Borisy, G. G. (1987). Chromosomes move poleward in anaphase along stationary microtubules that coordinate disassembly from their kinetochore ends. J. Cell Biol. 104:9–18.PubMedCrossRefGoogle Scholar
  25. Grimstone, A. V. and Klug, A. (1966). Observations on the substructure of flagellar fibres. J. Cell sci. 1:351–362.PubMedGoogle Scholar
  26. Hodge, A. J. and Petruska, J. A. (1963). Recent studies with the electron microscope on ordered aggre-gates of the tropocollagen macromolecule, in Aspects of Protein Structure (G. N. Ramachandran, ed.), pp. 289–300. Academic Press, New York.Google Scholar
  27. Huang, B., Ramanis, Z., and Luck, D. J. L. (1982). Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function. Cell 28:115–124.PubMedCrossRefGoogle Scholar
  28. Johnson, K. A. and Wall, J. S. (1983). Structure and molecular weight of the dynein ATPase. J. Cell Biol. 96:669–678.PubMedCrossRefGoogle Scholar
  29. Kinnamon, J. C. (1990). High-voltage electron microscopy at the University of Colorado. EMSA Bull. 20:115–122.Google Scholar
  30. Klug, A. and Berger, J. E. (1964). An optical method for the analysis of periodicities in electron micro-graphs, with some observations on the mechanism of negative staining. J. Mol. Biol. 10:565–569.PubMedCrossRefGoogle Scholar
  31. Klug, A., Crick, F. H. C., and Wyckoff, H. W. (1958). Diffraction by helical structures. Acta Crystallogr. 11:199–213.CrossRefGoogle Scholar
  32. Koshland, D. E., Mitchison, T. J., and Kirschner, M. W. (1988). Poleward chromosome movement driven by microtubule depolymerization in vitro. Nature 331:499–504.PubMedCrossRefGoogle Scholar
  33. Landis, W. J. (1985). Inorganic-organic interrelations in calcification: On the problem of correlating microscopic observation and mechanism, in The Chemistry and Biology of Mineralized Tissues (A. Veis, ed.), pp. 267–271. Elsevier, New York.Google Scholar
  34. Landis, W. J. (1986). A study of calcification in leg tendon from the domestic turkey. J. Ultrastruct. Mol. Struct. Res. 94:217–238.PubMedCrossRefGoogle Scholar
  35. Landis, W. J., Song, M. J., Leith, A., McEwen, L., and McEwen, B. F. (1990). Spatial relations between collagen and mineral in calcifying tendon determined by high voltage electron microscopy and tomographic 3D reconstruction. J. Cell Biol. 111:24a.Google Scholar
  36. Linck, R. W. and Langevin, G. L. (1982). Structure and chemical composition of insoluble filamentous components of sperm flagellar microtubules. J. Cell Sci. 58:1–22.PubMedGoogle Scholar
  37. Lindsey, J. D. and Ellisman, M. H. (1985a). The neuronal endomembrane system. I: Direct links between rough endoplasmic reticulum and the cis element of the Golgi apparatus. J. Neurosci. 5:31 1 1–3123.Google Scholar
  38. Lindsey, J. D. and Ellisman, M. H. (1985b). The neuronal endomembrane system. II: The muliple forms of the Golgi apparatus. J. Neurosci. 5:3124–3134.PubMedGoogle Scholar
  39. Liu, Y., McEwen, B. F., Rieder, C. L., and Frank, J. (1990). Tomographic reconstructions of 0.25 μm thick serial sections of a mammalian kinetochore, in Proc. XII Int. Congr. Electron Microscopy, Vol. 1, pp. 476–477.Google Scholar
  40. Luck, D. J. L. (1984). Genetic and biochemical dissection of the eukaryotic flagellum. J. Cell Biol. 98:789–794.PubMedCrossRefGoogle Scholar
  41. Manton, I. and Clarke, B. (1952). An electron microscope study of the spermatozoid of Sphagnum. J. Exp. Bot. 3:204–215.CrossRefGoogle Scholar
  42. Mastronarde, D. N., Wilson, C. J., and McEwen, B. F. (1989). Three-dimensional structure of intracellularly stained neurons and their processes revealed by HVEM and axial tomography. Soc. Neurosci. Abstr. 15:256.Google Scholar
  43. McEwen, B. F. and Frank, J. (1990). Application of tomographic 3D reconstruction methods to a diverse range of biological preparations, in Proc. XII Int. Congr. Electron Microscopy, Vol. 1, pp. 516–517.Google Scholar
  44. McEwen, B. F., Radermacher, M., Rieder, C. L., and Frank, J. (1986). Tomographic three-dimensional reconstruction of cilia ultrastructure from thick sections. Proc. Nat. Acad. Sci. USA 83:9040–9044.PubMedCrossRefGoogle Scholar
  45. McEwen, B. F., Rieder, C. L., and Frank, J. (1987a). Three-dimensional organization of the mammalian kinetochore. J. Cell Biol. 105:207a.Google Scholar
  46. McEwen, B. F., Rieder, C. L., Radermacher, M., Grassucci, R. A., Turner, J. N., and Frank, J. (1987b). The application of three-dimensional tomographic reconstruction methods to high-voltage electron microscopy, in Proc. 45th Ann. Elect. Microsc. Soc. America, Vol. 45, 570–573.Google Scholar
  47. McEwen, B. F., Song, M. J., Ruknudin, A., Barnard, D. P., Frank, J., and Sachs, F. (1990). Tomographic three-dimensional reconstruction of patch-clamped membranes imaged with the high-voltage electron microscope, in Proc. XII Int. Congr. Electron Microscopy, Vol. 1, pp. 522–523.Google Scholar
  48. Mitchison, T. J. (1988). Microtubule dynamics and kinetochore function in mitosis. Ann. Rev. Cell Biol. 4:527–549.PubMedCrossRefGoogle Scholar
  49. Mitchison, T. J. (1989). Mitosis: Basic concepts. Curr. Opin. Cell Biol. 1:67–74.PubMedCrossRefGoogle Scholar
  50. Nicklas, R. B. (1989). The motor for poleward chromosome movement in anaphase is in or near the kinetochore. J. Cell Biol. 109:2245–2255.PubMedCrossRefGoogle Scholar
  51. Omoto, C. K. and Kung, C. (1980). Rotation and twist of the central-pair microtubules in cilia of Paramecium. J. Cell Biol. 87:33–46.PubMedCrossRefGoogle Scholar
  52. Peachey, L. D. (1982). Three-dimensional structure of muscle membranes involved in the regulation of contraction in skeletal muscle fibers, Cell Muscle Motility 2:221–230.CrossRefGoogle Scholar
  53. Pepper, D. A. and Brinkley, B. R. (1977). Localization of tubulin in the mitotic apparatus of mammalian cells by immunofluorescence and immunoelectron microscopy. Chromosoma 60:223–235.PubMedCrossRefGoogle Scholar
  54. Pepper, D. A. and Brinkley, B. R. (1980). Tubulin nucleation and assembly in mitotic cells: Evidence for nucleic acids in kinetochores and centrosomes. Cell Motility 1:1–15.PubMedCrossRefGoogle Scholar
  55. Radermacher, M. and Frank, J. (1984). Representation of three-dimensionally reconstructed objects in electron microscopy by surfaces of equal density. J. Microsc. 136:77–85.PubMedCrossRefGoogle Scholar
  56. Rattner, J. B. (1986). The organization of the mammalian kinetochore. Chromosoma 93:515–520.PubMedCrossRefGoogle Scholar
  57. Rattner, J. B. and Bazett-Jones, D. D. (1989). Kinetochore structure: Electron spectroscopic imaging of the kinetochore. J. Cell Biol. 108:1209–1219.PubMedCrossRefGoogle Scholar
  58. Rieder, C. L. (1979). Ribonucleoprotein staining of centrioles and kinetochores in newt lung cell spindles. J. Cell Biol. 80:1–9.PubMedCrossRefGoogle Scholar
  59. Rieder, C. L. (1982). The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int. Rev. Cvtol. 78:1–58.CrossRefGoogle Scholar
  60. Rieder, C. L. (1990). Formation of the astral mitotic spindle: Ultrastructural basis for the centrosome-kinetochore interaction. Electron Microsc. Rev. 3:269–300.PubMedCrossRefGoogle Scholar
  61. Rieder, C. L. and Alexander, S. P. (1990). Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110:81–95.PubMedCrossRefGoogle Scholar
  62. Ris, H. and Witt, P. L. (1981). Structure of the mammalian kinetochore. Chromosoma 82:153–170.PubMedCrossRefGoogle Scholar
  63. Roos, U.-P. (1973). Light and electron microscopy of rat kangaroo cells in mitosis. II: Kinetochore structure and function. Chromosoma 41:195–220.PubMedCrossRefGoogle Scholar
  64. Roos, U.-P. (1977). The fibrillar organization of the kinetochore and the kinetochore region of mammalian chromosomes. Cytobiologie 16:82–90.Google Scholar
  65. Ruknudin, A., Song, M. J., Auerbach, A., and Sachs, F. (1989). The structure of patch-clamped membranes in high voltage electron microscopy, in Proc. 47th Ann. Electron Microsc. Soc. Am., Vol. 47, pp. 936–937.Google Scholar
  66. Ruknudin, A., Song, M. J., and Sachs, F. (1991). The ultrastructure of patch-clamped membranes: A study using high voltage electron microscopy. J. Cell Biol. 112:125–134.PubMedCrossRefGoogle Scholar
  67. Sachs, F. and Auerbach, A. (1984). The study of membranes using the patch clamp. Ann. Rev. Biophys. Bioeng. 13:269–302.CrossRefGoogle Scholar
  68. Sachs, F. and Song, M. J. (1987). High voltage electron microscopy of patch-clamped membranes, in Proc. 45th Ann. Electron Microsc. Soc. Am., Vol. 45, pp. 582–583.Google Scholar
  69. Satir, P. (1974). The present status of the sliding microtubule model of ciliary motion, in Cilia and Flagella (M. A. Sleigh, ed.), pp. 131–142. Academic Press, New York.Google Scholar
  70. Tilney, L. G., Bryan, J., Bush, D. J., Fujiwara, K., Mooseker, M. S., Murphy, D. B., and Snyder, D. H. (1973). Microtubules: Evidence for 13 protofilaments. J. Cell Biol. 59:267–275.PubMedCrossRefGoogle Scholar
  71. Unwin, P. T. N. and Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94:425–440.PubMedCrossRefGoogle Scholar
  72. Warner, F. D. (1974). The fine structure of the ciliary and flagellar axoneme, in Cilia and Flagella (M. A. Sleigh, ed.), pp. 11–37. Academic Press, New York.Google Scholar
  73. Williams, B. D., Mitchell, D. R., and Rosenbaum, J. L. (1986). Molecular cloning and expression of flagellar radial spoke and dynein genes of Chlamydomonas. J. Cell Biol. 103:1–11.PubMedCrossRefGoogle Scholar
  74. Wilson, C. J. (1986). Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimula-tion of ipsilateral and contralateral neocortex. Brain Res. 367:201–213.PubMedCrossRefGoogle Scholar
  75. Wilson, C. J. (1987). Three-dimensional analysis of neuronal geometry using HVEM. J. Electron Microsc. Tech. 6:175–183.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Bruce F. McEwen
    • 1
  1. 1.Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations