Biomaterials pp 265-291 | Cite as

Soft Tissue Replacement II: Blood-Interfacing Implants

  • Joon B. Park
  • Roderic S. Lakes


Blood-interfacing materials can be divided into two categories: short-term extracorporeal devices such as membranes for artificial organs (kidney and heart/lung machine), tubes and catheters for the transport of blood, and long-term in situ implants such as vascular implants and implantable artificial organs. Although pacemakers for the heart are not interfaced with blood directly, they are considered here since they are devices that help to circulate blood throughout the body.


Silicone Rubber Artificial Organ Artificial Heart Arterial Graft Pyrolytic Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T. Akutzu (ed.), Artificial Heart 1, Springer-Verlag, Berlin, 1986.Google Scholar
  2. S. D. Bruck, Blood Compatible Synthetic Polymers: An Introduction, Charles C. Thomas, Publ., Springfield, 111., 1974.Google Scholar
  3. A. H. Bulbulian, Facial Prosthetics, Charles C. Thomas, Publ., Springfield, Ill., 1973.Google Scholar
  4. K. B. Chandran, Cardiovascular Biomechanics, NYU Press, New York, 1992.Google Scholar
  5. D. O. Cooney, Biomedical Engineering Principles, Marcel Dekker, New York, 1976.Google Scholar
  6. H. Dardik (ed.), Graft Materials in Vascular Surgery, Year Book Medical Publ., Chicago, 1978.Google Scholar
  7. G. H. Gyers and V. Parsonet, Engineering in the Heart and Blood Vessels, J. Wiley and Sons, New York, 1969.Google Scholar
  8. A. D. Haubold, H. S. Shim, and J. C. Bokros, “Carbon Cardiovascular Devices,” in Assisted Circulation, F. Unger (ed.), Academic Press, New York, 1979, pp. 520–532.Google Scholar
  9. C. A. Homsy and C. D. Armeniades (eds.), Biomaterials for Skeletal and Cardiovascular Applications, J. Biomed. Mater. Symp., No. 3, J. Wiley and Sons, New York, 1972.Google Scholar
  10. H. Lee and K. Neville, Handbook of Biomedical Plastics, Chapters 3–5 and 13, Pasadena Technology Press, Pasadena, 1971.Google Scholar
  11. J. E. Liddicoat, S. M. Bekassy, A. C. Beall, D. H. Glaeser, and M. E. DeBakey, “Membrane vs Bubble Oxygenator: Clinical Comparison,” Ann. Surg., 184, 747–753, 1975.CrossRefGoogle Scholar
  12. W. Lynch, Implants: Reconstructing the Human Body, Van Nostrand Reinhold Co., Princeton, N.J., 1982.Google Scholar
  13. P. N. Sawyer and M. H. Kaplitt, Vascular Grafts, Appleton-Century-Crofts, New York, 1978.Google Scholar
  14. C. P. Sharma and M. Szycher (eds.), Blood Compatible Materials and Devices, Technomic, Lancaster, Pennsylvania, 1991.Google Scholar
  15. C. Stanley, W. E. Burkel, S. M. Lindenauer, R. H. Bartlett, and J. G. Turcotte (eds.), Biologic and Synthetic Vascular Prostheses, Grune & Stratton, New York, 1972.Google Scholar
  16. Transactions of American Society for Artificial Internal Organs,Published yearly and contains studies related to this chapter.Google Scholar
  17. A. B. Voorhees, A. Jaretski, and A. H. Blackmore, “Use of Tubes Constructed from Vinyon-N Cloth in Bridging Arterial Defects,” Ann. Surg., 135, 332–336, 1952.CrossRefGoogle Scholar
  18. D. F. Williams (ed.), Systemic Aspects of Blood Compatibility, CRC Press, Boca Raton, Fla., 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Joon B. Park
    • 1
  • Roderic S. Lakes
    • 1
  1. 1.The University of IowaIowa CityUSA

Personalised recommendations