Advertisement

Factorization of Nonlinear Systems

  • Henk Nijmeijer
Part of the Progress in Systems and Control Theory book series (PSCT, volume 9)

Abstract

We introduce a new concept of factor distribution for a nonlinear system as anew tool for studying the decomposition of such a system. The idea of factorizing generalizes a similar idea from linear system theory as well as the notion of controlled invariance for nonlinear systems.

Keywords

Nonlinear System Factor System Single Input Factor Distribution Linear Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AS]
    A.A. Agrachev & A.V. Sarychev, “On reduction of a smooth system linear in the control”, Math. USSR Sbornik 58, pp. 15–30, (1987).CrossRefGoogle Scholar
  2. [F11]
    M. Fliess, “Décompositions et cascades des systèmes automatiques et feuilletages invariants”, Bull. Soc. Math. France 113, pp. 285–293, (1985).Google Scholar
  3. [F12]
    M. Fliess, “Cascade decompositions of nonlinear systems, foliations and ideals of transitive Lie algebras”, Systems and Control Lett. 5, pp. 263–265, (1985).CrossRefGoogle Scholar
  4. [Is]
    A. Isidori, Nonlinear control systems, 2nd edition, Springer Verlag, New York, (1989).Google Scholar
  5. [JR]
    B. Jakubczyk & W. Respondek, “On linearization of control systems”, Bull. Acad. Polon. Sci. (Math.), 28, pp. 517–522, (1980).Google Scholar
  6. [Kr]
    A.J. Krener, “A decomposition theory for differentiable systems”, SIAM Jnl. Control & Optimiz. 15, pp. 813–829, (1977).CrossRefGoogle Scholar
  7. [MRvdS]
    R. Marino, W. Respondek & A.J. van der Schaft, “Almost disturbance decoupling for single-input single-output nonlinear systems”, IEEE Trans. Aut. Contr. 34, pp. 1013–1017, (1989).CrossRefGoogle Scholar
  8. [Nij]
    H. Nijmeijer, “On the theory of nonlinear control systems”, in Three Decades of Mathematical System Theory (eds. H. Nijmeijer & J.M. Schumacher) LNCIS 135, Springer Verlag, Berlin, pp. 339–357, (1989).Google Scholar
  9. [NvdS]
    H. Nijmeijer & A.J. van der Schaft, Nonlinear dynamical control systems, Springer Verlag, New York, (1990).Google Scholar
  10. [Pi]
    G. Picci, “Aggregation of linear systems in a completely deterministic framework”, in Three Decades of Mathematical System Theory (eds. H. Nijmeijer & J.M. Schumacher) LNCIS 135, Springer Verlag, Berlin, pp. 358–381, (1989).Google Scholar
  11. [Re]
    W. Respondek, “On decomposition of nonlinear control systems”, Syst. Contr. Lett. 1, pp. 301–308, (1982).CrossRefGoogle Scholar
  12. [RN]
    W. Respondek & H. Nijmeijer, “On local right-invertibility of nonlinear control systems”, C-TAT 4, pp. 325–348, (1988).Google Scholar
  13. [Sc]
    J.M. Schumacher, “Linear system representations”, in Three Decades of Mathematical System Theory (eds. H. Nijmeijer & J.M, Schumacher) LNCIS 135, Springer Verlag, Berlin, pp. 382–409, (1989).Google Scholar
  14. [vdS]
    A.J. van der Schaft, “Linearization and input-output decoupling for general nonlinear systems”, Syst. Contr. Lett. 5, pp. 27–33, (1984).CrossRefGoogle Scholar
  15. [Tr]
    H.L. Trentelman, Almost invariant subspaces and high gain feedback, CWI Tract 29, Amsterdam (1986).Google Scholar
  16. [Wi]
    J.C. Willems, “Almost invariant subspaces: an approach to high gain feedback design–part I, almost controlled invariant subspaces”, IEEE Trans. Automat. Contr. 26, pp. 235–252, (1981).CrossRefGoogle Scholar
  17. [Wo]
    W.M. Wonham, Linear multivariable control: a geometric approach, Springer Verlag, Berlin, (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Henk Nijmeijer
    • 1
  1. 1.Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations