Advertisement

Adaptations to Transformations of the Optic Array

  • Ian P. Howard
Chapter
Part of the Perspectives in Vision Research book series (PIVR)

Abstract

People adapt to visual distortions that are experienced, for instance, when they first wear spectacles. The changes underlying adaptation can occur in the oculocentriC., or retinotopiC., system, which codes the positions and movements of images on the retina. They can occur in the headcentric system, which codes the positions of objects with respect to the head, or in the body centric system, the system that allows us to point to a seen object with an unseen hand. Finally, they can occur in the exocentric system, which allows us to judge the position of an object with respect to an external frame of reference, for instance, the orientation of a line relative to vertical.

Keywords

Visual Field Visual Scene Visual Space Visual Distortion Unfamiliar Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, D. P., 1967, Perception of contour orientation in the central fovea. Part I: Short lines, Vision Res. 7:975–997.PubMedCrossRefGoogle Scholar
  2. Badcock, D. R., and Westheimer, G., 1985, Spatial location and hyperacuity: The centre/surround location contribution function has two substrates, Vision Res. 25:1259–1267.PubMedCrossRefGoogle Scholar
  3. Békésy, G. von, 1967, Sensory Inhibition, McGraw, Princeton.Google Scholar
  4. Bowne, S. F., 1990, Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination, Vision Res. 30:449–461.PubMedCrossRefGoogle Scholar
  5. Cohen, H. B., 1966, Some critical factors in prism adaptation, Am. J. Psychol. 79:285–290.PubMedCrossRefGoogle Scholar
  6. Courjon, J. H., Jeannerod, M., and Prablanc, C., 1981, An attempt at correlating visuomotor-induced tilt aftereffect and ocular cyclotorsion, Perception 10:519–524.PubMedCrossRefGoogle Scholar
  7. Favreau, O. E., 1979, Persistence of simple and contingent motion aftereffects, Percept. Psychophys. 26:187–194.CrossRefGoogle Scholar
  8. Held, R., and Rekosh, J., 1963, Motor-sensory feedback and geometry of visual space, Science 141:722–723.PubMedCrossRefGoogle Scholar
  9. Hill, A. L., 1972, Direction constancy, Percept. Psychophys. 11:175–178.CrossRefGoogle Scholar
  10. Hirsch, J., and Hylton, R., 1982, Limits of spatial-frequency discrimination as evidence of neural interpolation, J. Opt. Soc. Am. 72:1367–1374.PubMedCrossRefGoogle Scholar
  11. Howard, I.P., 1982, Human Visual Orientation, Wiley, Chichester.Google Scholar
  12. Howard, I. P., and Anstis, T., 1974, Muscular and joint-receptor components in postural persistence, J. Exp. Psychol. 103:167–170.PubMedCrossRefGoogle Scholar
  13. Howard, I. P., and Templeton, W. B., 1963, The effect of steady fixation on the judgement of relative depth, Q. J. Exp. Psychol. 16:193–203.Google Scholar
  14. Howard, I.P., and Templeton, W. B., 1966, Human Spatial Orientation, Wiley., Chichester.Google Scholar
  15. Klein, S.A., and Levi, D. M.,1985, Hyperacuity thresholds of 1.0 second: Theoretical predictions and empirical validation, J. Opt. Soc. Am. A2:1170–1190.CrossRefGoogle Scholar
  16. Kohler, L, 1965, Experiments with prolonged optical distortions, Acta Psychol. 11:176–178.Google Scholar
  17. Köhler, W., and Wallach, H., 1944, Figurai aftereffects: An investigation of visual processes, Proc. Am. Phil. Soc. 88:269–357.Google Scholar
  18. Loomis, J. M., and Carter, C. C., 1978, Sensitivity to shifts of a point stimulus: An instance of tactile hyperacuity, Percept Psychophys. 24:487–492.PubMedCrossRefGoogle Scholar
  19. McCollough, C., 1965, Color adaptation of edge-detectors in the human visual system, Science 149:1115.PubMedCrossRefGoogle Scholar
  20. McKee, S. P., Silverman, G. H., and Nakayama, K., 1986, Precise velocity discrimination despite random variations in temporal frequency and contrast, Vision Res. 26:609–619.PubMedCrossRefGoogle Scholar
  21. Morgan, C. L., 1978, Constancy of egocentric visual direction, Percept. Psychophys. 23:61–68.PubMedCrossRefGoogle Scholar
  22. Nakayama, K., and Tyler, C. W., 1978, Relative motion induced between stationary lines, Vision Res. 18:1663–1668.PubMedCrossRefGoogle Scholar
  23. Paap, K. R., and Ebenholtz, S. M., 1976, Perceptual consequences of potentiation in the extraocular muscles: An alternative explanation for adaptation to wedge prisms, J. Exp. Psychol. 2:457–468.Google Scholar
  24. Regan, D., 1989, Human Brain Electrophysiology, Elsevier, New York.Google Scholar
  25. Regan, D., and Beverley, K. L., 1978, Illusory motion in depth: Aftereffect of adaptation to changing size, Vision Res. 18:209–212.PubMedCrossRefGoogle Scholar
  26. Regan, D., and Beverley, K. L., 1985, Postadaptation orientation discrimination, J. Opt. Soc. Am. 2A: 147–155.CrossRefGoogle Scholar
  27. Regan, D., Bartol, S., Murray, T. J., and Beverley, K. L., 1982, Spatial frequency discrimination in normal vision and in patients with multiple sclerosis, Brain 105:735–754.PubMedCrossRefGoogle Scholar
  28. Regan, D., and Price, P., 1986, Periodicity in orientation discrimination and the unconfounding of visual information, Vision Res. 26:1299–1302.PubMedCrossRefGoogle Scholar
  29. Rieser, J. J., and Banks, M. S., 1981, The perception of verticality and the frame of reference of the visual tilt aftereffect, Percept. Psychophys. 29:113–120.PubMedCrossRefGoogle Scholar
  30. Rock, L, 1965, Adaptation to a minified image, Psychonom. Sci. 2:105–106.Google Scholar
  31. Rock, I., and Heimer, W., 1957, The effect of retinal and phenominal orientation on the perception of form, Am. J. Psychol. 70:493–511.PubMedCrossRefGoogle Scholar
  32. Scheuhammer, J., and Timney, B., 1982, Adaptation to optically reduced size, Perception 11:139–152.PubMedCrossRefGoogle Scholar
  33. Templeton, W. B., Howard, I.P., and Easting, G., 1965, Satiation and the tilt aftereffect, Am. J. Psychol. 78:656–659.PubMedCrossRefGoogle Scholar
  34. Watamaniuk, S. N. J., Sekuler, R., and Williams, D. W., 1989, Direction perception in complex dynamic displays: The integration of direction information, Vision Res. 29:47–59.PubMedCrossRefGoogle Scholar
  35. Watt, R. J., Morgan, M. J., and Ward, R. M., 1983, Stimulus features that determine the visual location of a bright bar, Invest. Ophthalmol. Vis. Sci. 24:66–71.PubMedGoogle Scholar
  36. Westheimer, G., 1984, Line-separation discrimination curve in the human fovea: smooth or segmented? J. Opt. Soc. Am. 1A:683–684.CrossRefGoogle Scholar
  37. Wilson, H. R., 1986, Responses of spatial mechanisms can explain hyperacuity, Vision Res. 26:453–469.PubMedCrossRefGoogle Scholar
  38. Wolfe, J. M., 1984, Short test flashes produce large tilt aftereffects, Vision Res. 24:1959–1964.PubMedCrossRefGoogle Scholar
  39. Wolfe, J. M., and O’Connell, M., 1986, Fatigue and structural change: Two consequences of visual pattern adaptation, Invest. Ophthalmol. Vis. Sci. 27:538–543.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Ian P. Howard
    • 1
  1. 1.Human Performance in Space LaboratoryYork UniversityNorth YorkCanada

Personalised recommendations