Advertisement

Lens Calcium and Cataract

  • George Duncan
  • Julia M. Marcantonio
  • Julie Tomlinson
Chapter
Part of the Perspectives in Vision Research book series (PIVR)

Abstract

Calcium was first implicated in the cataract process in the early years of this century when it was observed that many human cataractous lenses had very high calcium concentrations compared with clear donor lenses (Adams, 1929). The early studies had shown that not all cataractous lenses had high calcium values, and this has recently been confirmed (Duncan and Bushell, 1975). An increase in lens calcium is accompanied by white, light-scattering opacities, and these are often found in highly localized regions of the outer cortex (Duncan and Jacob, 1984). Nuclear brunescence, or nuclear cataract, appears to originate by another process, since lenses with pure nuclear cataracts have near-normal internal calcium levels. In general, it appears that sodium and calcium increase together in cortical cataract, and both ions are normally distributed in nuclear cataracts (Maraini and Mangili, 1973).

Keywords

Free Calcium Total Calcium Human Lens Nuclear Cataract Senile Cataract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. R., 1929, The role of calcium in senile cataract, Bio-chem. J. 23: 902–912.Google Scholar
  2. Alcala, J., and Maisel, H., 1985, Biochemistry of lens plasma membranes and cytoskeleton, in: The Ocular Lens (H. Maisel, ed.), Marcel Dekker, New York, pp. 169–222.Google Scholar
  3. Ashton, N., Barnett, K. C., Clay, C. E., and Clegg, F. G., 1977, Congenital nuclear cataracts in cattle, Vet. Rec. 100: 505–508.Google Scholar
  4. Barnett, K. C., 1982, Lens opacities in the dog as models for human eye disease, Trans. Ophthalmol. Soc. U.K. 102: 346–349.PubMedGoogle Scholar
  5. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  6. Boutros, G., Koch, H. R., Jansen, R., Jacob, T. J. C., and Duncan, G., 1984, Effect of 8-methoxypsoralen on rat lens cations, membrane potential and protein levels, Exp. Eye Res. 38: 509–513.PubMedCrossRefGoogle Scholar
  7. Cooper, K. E., Tang, J. M., Rae, J. L., and Eisenberg, R. S., 1986, A cation channel in frog lens epithelia responsive to pressure and calcium, J. Membr. Biol. 93: 259–265.PubMedCrossRefGoogle Scholar
  8. Delamere, N. A., and Paterson, C. A., 1981, Hypocalcaemic cataract, in: Mechanisms of Cataract Formation in the Human Lens (G. Duncan, ed.), Academic Press, New York, pp. 219–236.Google Scholar
  9. Delamere, N. A., and Paterson, C.A., 1985, Characteristics of 45Ca uptake by the rabbit lens, Exp. Eye Res. 41: 11–16.PubMedCrossRefGoogle Scholar
  10. Dipolo, R., and Beauge, L., 1983, The calcium pump and sodium-calcium exchange in squid axons, Annu. Rev. Physiol. 45: 313–340.PubMedCrossRefGoogle Scholar
  11. Duncan, G., and Bushell, A. R., 1975, Ion analysis of human cata-ractous lenses, Exp. Eye Res. 20: 223–230.PubMedCrossRefGoogle Scholar
  12. Duncan, G., and Jacob, T. J. C., 1984, Calcium and the physiology of cataract, Ciba Found. Symp. 106: 132–148.PubMedGoogle Scholar
  13. Duncan, G., Gandolfi, S.A., and Maraini, G., 1988, Diamide alters membrane Na+ and K+ conductances and increases internal resistance in the isolated rat lens, Exp. Eye Res. 47: 807–818.PubMedCrossRefGoogle Scholar
  14. Duncan, G., Hightower, K. R., Gandolfi, S. A., Tomlinson, J., and Maraini, G., 1989a, Human lens membrane cation permeability increases with age, Invest. Ophthalmol. Vis. Sci. 30: 1855–1859 (in press).Google Scholar
  15. Duncan, G., Elliott, J. A., Webb, S. F., Dawson, A. P., Cullen, P. J., and Thastrup, O., 1989b, Calcium release from intracellular stores in tissue—cultured human lens epithelial cells, Invest. Ophthalmol. Vis. Sci. 30: 130a.Google Scholar
  16. Fleckenstein, A., 1983, Calcium Antogonism in Heart and Smooth Muscle, John Wiley & Sons, New York.Google Scholar
  17. Fraser, P. J., Duncan, G., and Tomlinson, J., 1989, Effects of a cholinsterase inhibitor on salmonid lens: A possible cause for the increased incidence of cataract in Salmo solar, Exp. Eye Res. 49: 293–298.CrossRefGoogle Scholar
  18. Hightower, K. R., and Reddy, V. N., 1981, Metabolic studies on calcium transport in mammalian lens, Curr. Eye Res. 1: 197–204.PubMedCrossRefGoogle Scholar
  19. Hightower, K. R., Leverenz, V., and Reddy, V. N., 1980, Calcium transport in the lens, Invest. Ophthalmol. Vis. Sci. 19: 1059–1064.PubMedGoogle Scholar
  20. Hightower, K. R., Riley, M. V., and McCready, J., 1989, Regional distribution of calcium in alloxan diabetic rabbit lens, Curr. Eye Res. 8: 517–522.PubMedCrossRefGoogle Scholar
  21. Iimuro, A., Takenhana, M., and Iwata, S., 1987, Influence of calmodulin antagonists on Ca2+ transport in the lens, Ophthalmic Res. 19: 95–101.PubMedCrossRefGoogle Scholar
  22. Iwata, S., 1985, Calcium-pump and its modulator in the lens: A review, Curr. Eye Res. 4: 299–304.PubMedCrossRefGoogle Scholar
  23. Jacob, T. J. C., and Duncan, G., 1981, Calcium controls both sodium and potassium permeability of lens membranes, Exp. Eye Res. 33: 85–93.PubMedCrossRefGoogle Scholar
  24. Jacob, T. J. C., Bangham, J. A., and Duncan, G., 1985, The characterisation of a cation channel on the optical surface of the frog lens epithelium, Q. J. Physiol. 70: 403–421.Google Scholar
  25. Maraini, G., and Mangili, R., 1973, Differences in proteins and in the water balance of the lens in nuclear and cortical types of senile cataract, Ciba Found. Symp. 19: 79–94.Google Scholar
  26. Marcantonio, J. M., Duncan, G., and Rink, H., 1986, Calcium-induced opacification and loss of protein in the organ-cultured bovine lens, Exp. Eye Res. 42: 617–630.PubMedCrossRefGoogle Scholar
  27. McGahan, M. C., Chin, B., and Bentley, P. J., 1983, Calcium metabolism in the rabbit lens, Exp. Eye Res. 36: 57–65.PubMedCrossRefGoogle Scholar
  28. Rae, J. L., 1985, The application of patch clamp methods to ocular epithelia, Curr. Eye Res. 4: 409–424.PubMedCrossRefGoogle Scholar
  29. Shearer, T. R., David, L. L., and Anderson, R. S., 1987, Selenite cataract: A review, Curr. Eye Res. 6: 289–296.PubMedCrossRefGoogle Scholar
  30. Thastrup, O., Dawson, A. P., Cullen, P. J., Sharff, O., Foder, B., Bjerrum, P. J., Christensen, S. B., and Hanley, M. R., 1989, Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage, Agents Actions (in press).Google Scholar
  31. Tomlinson, J., Bannister, S. C., Croghan, P. C., and Duncan, G., 1991, Analysis of rat lens 45Ca2 + fluxes: Evidence for NA +Ca2+ exchange, Exp. Eye Res. 52: (in press).Google Scholar
  32. Truscott, R. J. W., Marcantonio, J. M., Tomlinson, J., and Duncan, G., 1990, Opacification and proteolysis in the intact rat lens, Invest. Ophthalmol. Vis. Sci. 31: 2405–2411.PubMedGoogle Scholar
  33. Tsien, R. Y., Pozzan, T, and Rink, T. J., 1982, Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator, J. Cell Biol. 94: 325–334.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • George Duncan
    • 1
  • Julia M. Marcantonio
    • 1
  • Julie Tomlinson
    • 1
  1. 1.School of Biological SciencesUniversity of East AngliaNorwichGreat Britain

Personalised recommendations