Advertisement

On Transport in Heterostructures within the Independent-Particle Picture

  • J. Zhang
  • W. Pötz
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 113)

Abstract

We use a fully self-consistent model for the I–V characteristic of quantum-heterostructures to investigate effects of the carrier-carrier interaction within the mean-field approximation. We compare the Hartree approximation with two models which account for exchange-correlation effects within the local density approximation. We find that the Hartree term provides the dominant correction to the shape of the I–V curve, while exchange-correlation effects merely narrow the width of the bistable-voltage region.

Keywords

Buffer Layer Local Density Approximation Resonant Tunneling Double Barrier Hartree Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. O. Vassell, J. Lee, and H. F. Lockwood, J.Appl.Phys. 54, 5206(1983);CrossRefGoogle Scholar
  2. 1a.
    M. Cahay, M. McLennan, S. Datta, and M. S. Lundstrom, Appl.Phys.Lett. 50, 612(1987);CrossRefGoogle Scholar
  3. 1b.
    K. F. Brennan, J.Appl.Phys. 62, 2392(1987);CrossRefGoogle Scholar
  4. 1c.
    W. R. Frensley, Solid-State Electronics 32, 1235(1989);CrossRefGoogle Scholar
  5. 1d.
    N. C. Kluksdahl, A. M. Kriman, and D. K. Ferry, Phys.Rev. B39, 7720(1989)CrossRefGoogle Scholar
  6. 2.
    W. Pötz, J.Appl.Phys. 66, 2458(1989)CrossRefGoogle Scholar
  7. 3.
    V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys.Rev.Lett. 58,1256(1987)CrossRefGoogle Scholar
  8. 4.
    T. C. L. G. Sollner, Phys.Rev.Lett. 59, 1622(1987);CrossRefGoogle Scholar
  9. 4a.
    V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys.Rev.Lett. 59, 1623(1987)CrossRefGoogle Scholar
  10. 5.
    G. A. Toombs, E. S. Alves, L. Eaves, T. J. Foster, M. Henini, O. H. Hughes, M. L. Leadbeater, C. A. Payling, F. W. Sheard, P. A. Claxton, G. Hill, M. A. Pate, and J. C. Portal, The fourteenth International Symposium on Gallium Arsenide and Related Compounds, Crete, 1987, Inst.Phys.Conf.Ser.No.91, ed. by A. Christou and H. S. Rupprecht, (IOP, Briston, 1988) p.581Google Scholar
  11. 6.
    K. M. S. V. Bandara and D. D. Coon, Appl.Phys.Lett. 53,1865(l988)CrossRefGoogle Scholar
  12. 7.
    P. Hohenberg and W. Kohn, Phys.Rev. 136, B864(1964);MathSciNetCrossRefGoogle Scholar
  13. 7a.
    W. Kohn and L. J. Sham, Phys.Rev. l40, A1133(1965);MathSciNetCrossRefGoogle Scholar
  14. 7b.
    H. A. Bethe and R. Jackiw, Intermediate Quantum Mechanics, 2nd ed. (Benjamin, London, 1968)Google Scholar
  15. 8.
    O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B13, 4274(1976)CrossRefGoogle Scholar
  16. 9.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Holt, Rinehart and Winston, NY, 1976)Google Scholar
  17. 10.
    D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, NY, 1974)Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. Zhang
    • 1
  • W. Pötz
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at ChicagoUSA

Personalised recommendations