Advertisement

Transport in Electron Waveguides: Filtering and Bend Resistances

  • Harold U. Baranger
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 113)

Abstract

Recent work has established that in certain materials electrons can travel without significant scattering, either elastic or inelastic, over a surprisingly large distance. The material of choice in this regard is the two-dimensional electron gas which is created at the GaAs/GaAlAs interface in modulation-doped heterostructures for which the elastic mean-free-path can be substantially greater than 1 μm. Furthermore, one can define wires in this material with a width of order the Fermi wavelength.[1] Studies of transport in these “quasi-one-dimensional ballistic microstructures” have revealed many novel features.

Keywords

Green Function Transmission Coefficient Outgoing Mode Hall Resistance Fermi Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    G. Timp, A. M. Chang, P. Mankiewich, R. Behringer, J. E. Cunningham, T. Y. Chang, and R. E. Howard, Phys. Rev. Lett. 59, 732 (1987).CrossRefGoogle Scholar
  2. 2.
    G. Timp, H. U. Baranger, P. deVegvar, J. E. Cunningham, R. E. Howard, R. Behringer, and P. M. Mankiewich, Phys. Rev. Lett. 60, 2081 (1988).CrossRefGoogle Scholar
  3. 3.
    M. Biittiker, Phys. Rev. Lett. 57, 1761 (1986).CrossRefGoogle Scholar
  4. 4.
    R. Landauer, IBM J. Res. Dev. 1, 233 (1957) andMathSciNetCrossRefGoogle Scholar
  5. 4a.
    R. Landauer, Z. Phys. B 68, 217 (1987).CrossRefGoogle Scholar
  6. 5.
    D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).MathSciNetCrossRefGoogle Scholar
  7. 6.
    A. D. Stone and A. Szafer, IBM J. Res. Develop. 32, 384 (1988).CrossRefGoogle Scholar
  8. 7.
    P. A. Lee and D. S. Fisher, Phys. Rev. Lett. 47, 882 (1981);MathSciNetCrossRefGoogle Scholar
  9. 7a.
    D. J. Thouless and S. Kirkpatrick, J. Phys. C 14, 235 (1981);CrossRefGoogle Scholar
  10. 7b.
    A. MacKinnon, Z. Phys. B 59, 385 (1985).CrossRefGoogle Scholar
  11. 8.
    A. Messiah, Quantum Mechanics (Wiley, 1958) pp. 825–828.Google Scholar
  12. 9.
    Y. Takagaki, K. Gamo, S. Namba, S. Ishida, S. Takaoka, K. Murase, K. Ishibashi, and Y. Aoyagi, Solid State Commun. 68, 1051 (1988).CrossRefGoogle Scholar
  13. 10.
    Y. Avishai and Y. B. Band, Phys. Rev. Lett. 62, 2527 (1989).CrossRefGoogle Scholar
  14. 11.
    G. Kirczenow, Sol. State Comm. 71, 469 (1989).CrossRefGoogle Scholar
  15. 12.
    R. E. Behringer, G. Timp, H. U. Baranger, and J. E. Cunningham, submitted to Phys. Rev. Lett.Google Scholar
  16. 13.
    C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett. 63, 1857 (1989).CrossRefGoogle Scholar
  17. 14.
    M. L. Roukes, et al., Phys. Rev. Lett. 59, 3011 (1987).CrossRefGoogle Scholar
  18. 15.
    H. U. Baranger and A. D. Stone, Phys. Rev. Lett. 63, 414 (1989).CrossRefGoogle Scholar
  19. 16.
    B. J. van Wees, et al., Phys. Rev. Lett. 62, 1181 (1989).CrossRefGoogle Scholar
  20. 17.
    B. J. van Wees, et al., Phys. Rev. B 39, 8066 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Harold U. Baranger
    • 1
  1. 1.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations