Advertisement

SOI Circuits

  • Jean-Pierre Colinge
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 132)

Abstract

One of the major niche markets where SOI circuits and devices are currently used is the aerospace/military market, where radiation hardness is a key issue. High-level radiation hardness is also a prerequisite for circuits used in core instrumentation for nuclear power reactors (a containment accident may lead to more than 100 Mrad(Si) of dose exposure), nuclear well logging, control electronics in spacecraft nuclear reactors, reaction chamber instrumentation for particle colliders, and tokamak fusion reactor instrumentation. In some cases, these high-level irradiation environments may be associated with high temperature conditions [8.1]. Under these conditions, SOI has an advantage over bulk CMOS devices, since the reduced active silicon volume and the full dielectric isolation gives rise to lower leakage currents in SOI than in bulk. As we have seen in Section 7.1, SOI MOSFETs are inherently harder against SEU and gamma-dot than their bulk counterparts. SOI circuits are also free of latchup problems, which can be triggered by SEU or gamma-dot photocurrents in bulk CMOS circuits. Upon SEU or gamma-dot exposure SOI circuits such as 4k × 1 SIMOX SRAMs show bit error rates comparable to SOS but better than those obtained in bulk CMOS [8.2]. The main reason for not obtaining performances superior to those of SOS (a smaller silicon film thickness can indeed be utilized in SIMOX than in SOS) is the amplification of the SEU-induced photocurrent by the parasitic lateral bipolar transistor present in the SIMOX devices, where the minority carrier lifetime is high, compared to that of SOS material. Modern SIMOX memories (64k SRAMs) offer SEU error rates of 10−9 errors/bit-day (worst-case geosynchronous orbit error rate) and retain functionality at dose-rate exposures up to 1011 rad(Si)/sec [8.3]. These numbers represent an hardness improvement by a factor ≅100 over bulk silicon.

Keywords

Bulk Silicon CMOS Circuit Move Object Detector Epitaxial Lateral Overgrowth Frame Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 8.1.
    D.M. Fletwood, F.V. Thome, S.S. Tsao, P.V. Dressendorfer, V.J. Dandini, and J.R. Schwank, IEEE Trans. Nucl. Sci, Vol. 35, p. 1099, 1988CrossRefGoogle Scholar
  2. 8.2.
    G.E.Davis, L.R. Hite, T.G.W. Blake, C.E. Chen, H.W. Lam, R. DeMoyer, IEEE Trans. on Nuclear Science, Vol. 32, p. 4432, 1985Google Scholar
  3. 8.3.
    W.F. Kraus and J.C. Lee, Proceedings SOS/SOI Technology Conference, p. 173, 1989Google Scholar
  4. 8.4.
    J.L. Leray, E. Dupont-Nivet, M Raffaelli, Y.M. Coïc, O. Musseau, J.F. Péré, P. Lalande, J. Brédy, A.J. Auberton-Hervé, M. Bruel, and B. Giffard, Annales de Physique, Colloque n°2, Vol. 14, suppl. to n°6, p. 565, 1989Google Scholar
  5. J.L. Leray, E. Dupont-Nivet, J.F. Péré, Y.M. Coïc, A.J. Auberton-Hervé, M. Bruel, and B. Giffard, Tech. Prog. of IEEE Nuclear and Space Radiation Effects Conference (NSREC), paper PG-7, p. 35, 1990 andGoogle Scholar
  6. J.L. Leray, E. Dupont-Nivet, J.F. Péré, Y.M. Cole, M. Rafaelli, A.J. AubertonHervé, M. Bruel, B. Giffard and J. margail, IEEE Trans. Nucl. Sci., Vol. 37, no. 6, Dec. 1990Google Scholar
  7. 8.5.
    M.A. Guerra, Proc. of the 4th International Symposium on Silicon-on-Insulator Technology and Devices, Ed. by D. Schmidt, the Electrochemical Society, Vol. 90–6, p. 21, 1990Google Scholar
  8. 8.6.
    G.T. Goeloe, G.A. Hanidu, and K.H. Lee, Tech. Prog. of IEEE Nuclear and Space Radiation Effects Conference (NSREC), paper PG-5, p. 35, 1990Google Scholar
  9. 8.7.
    W.F. Kraus, J.C. Lee, W.H. Newman, and J.E. Clark, Tech. Prog. of IEEE Nuclear and Space Radiation Effects Conference (NSREC), paper PG-6, p. 35, 1990Google Scholar
  10. 8.8.
    C.S. Yue, J. Kueng, P. Fechner, and T. Randazzo, Proceedings SOS/SOI Technology Conference, p. 173, 1990Google Scholar
  11. 8.9.
    L.J. Palkuti, J.J. LePage, IEEE Transactions on Nuclear Science, Vol. 29, p. 1832, 1982CrossRefGoogle Scholar
  12. 8.10.
    J.L. Leray, E. Dupont-Nivet, J.F. Péré, O. Musseau, P. Lalande, and A. Umbert, Proceedings SOS/SOI Technology Conference, p. 114, 1989Google Scholar
  13. 8.11.
    W.A. Krull and J.C. Lee, Proceedings SOS/SOI Technology Workshop, p. 69, 1989Google Scholar
  14. 8.12.
    W.P. Maszara, Proc. of the 4th International Symposium on Silicon-onInsulator Technology and Devices, Ed. by D. Schmidt, the Electrochemical Society, Vol. 90–6, p. 199, 1990Google Scholar
  15. 8.13.
    G.A. Armstrong, W.D. French, and J.C. Alderman, Proceedings IEEE SOS/SOI Technology Conference, p. 17, 1990Google Scholar
  16. 8.14.
    L.J. McDaid, S. Hall, J.S. Marsland, W. Eccleston, J.C. Alderman, K.R. Cook, R.J. Bunyan and M.J. Uren, Proceedings IEEE SOS/SOI Technology Conference, p. 19, 1990Google Scholar
  17. 8.15.
    J.Y. Choi and J.G. Fossum, Proceedings IEEE SOS/SOI Technology Conference, p. 21, 1990Google Scholar
  18. 8.16.
    Y. Yamaguchi, T. Iwamatsu, T. Nishimura, and Y. Akasaka, Proceedings IEEE SOS/SOI Technology Conference, p. 23, 1990Google Scholar
  19. 8.17.
    L.J. McDaid, S. Hall, W. Eccleston,P. W.tkinson, and J.C. Alderman, Proceedings IEEE SOS/SOI Technology Conference, p. 141, 1990Google Scholar
  20. 8.18.
    J.P. Colinge, Technical Digest of IEDM, p. 817, 1989Google Scholar
  21. 8.19
    A.J. Auberton-Hervé, B. Giffard, and M. Bruel, Proceedings IEEE SOS/SOI Technology Conference, p. 169, 1989Google Scholar
  22. 8.20.
    T.W. Houston, H. Lu, P. Mei, T.G.W. Blake, L.R. Hite, R. Sundaresan, M. Matloubian, W.E. Bailey, J. Liu, A. Peterson, and G. Pollack, Proceedings IEEE SOS/SOI Technology Conference, p. 137, 1989Google Scholar
  23. 8.21.
    H. Gotou, A. Sekiyama, T. Seki, S. Nagai, N. Suzuki, M. Hayasaka, Y. Matsukawa, M. Miyazima, Y. Kobayashi, S. Enomoto, and. K. Imaoka, Technical Digest of IEDM, p. 912, 1989Google Scholar
  24. 8.22.
    A.J. Auberton-Hervé, M. Bruel, C. Jaussaud, J. Margail, W. D’Hespel, J.F. Péré, A. Vitez, and A. Tissot, Proceedings European SOI Workshop, Ed. by D. Bensahel and G. Bomchil, paper F-03, 1988Google Scholar
  25. 8.23.
    H. Miki, Y. Omura, T. Ohmameuda, M. Kumon, K. Asada, K. Izumi, T. Sakai, and T. Sugano, Technical Digest of IEDM, p. 906, 1989Google Scholar
  26. 8.24.
    J.P. Colinge, J. Kang, W. McFarland, C. Stout, and R. Walker, Proceedings IEEE SOS/SOI Technology Workshop, p. 68, 1988Google Scholar
  27. 8.25.
    J.P. Colinge, J. Kang, W. McFarland, C. Stout, and R. Walker, Proceedings Hewlett-Packard Design Technology Conference, p. 356, 1988Google Scholar
  28. 8.26.
    A. Kamgar, S.J. Hillenius, H.I. Cong, R.L. Field, and J.C. Sturm, Technical Digest of IEDM, p. 829, 1989Google Scholar
  29. 8.27.
    M. Guerra, A. Wittkower, J. Stahman, and J. Schrankler, Semiconductor international, May 1990Google Scholar
  30. 8.28.
    A.J. Auberton-Hervé, Proceedings IEEE SOS/SOI Technology Conference, p. 149, 1990Google Scholar
  31. 8.29.
    J.F. Gibbons and K.F. Lee, IEEE Electron Device Letters, Vol. 1, p. 117, 1980CrossRefGoogle Scholar
  32. 8.30.
    J.P. Colinge, E. Demoulin, and M. Lobet, IEEE Trans. on Electron Devices, Vol. 29, p. 585, 1982CrossRefGoogle Scholar
  33. 8.31.
    R.P. Zingg and B. H6fflinger, Tech. Digest of International Electron Device Meeting (IEDM), p. 909, 1989Google Scholar
  34. 8.32.
    L. Stringa and A. Zorat, Ext. Abstracts of the 5th Internat. Workshop on Future Electron Devices - Three-Dimensional Integration, Miyagi-Zao, Japan, p. 47, 1988Google Scholar
  35. 8.33.
    T. Nishimura and Y. Akasaka, Ext. Abstracts of the 5th Internat. Workshop on Future Electron Devices - Three-Dimensional Integration, Miyagi-Zao, Japan, p. 1, 1988Google Scholar
  36. T. Nishimura, Y. Inoue, K. Sugahara, S. Kusunoki, T. Kumamoto, S. Nagawa, M. Nakaya, Y. Horiba, and Y. Akasaka, Tech. Digest of International Electron Device Meeting (IEDM), p. 111, 1987Google Scholar
  37. 8.34.
    A. Terao and F. Van de Wiele, IEEE Circuits and Devices Magazine, Vol. 3, no 6, p. 31, 1987CrossRefGoogle Scholar
  38. 8.35.
    R. Aibara, Y. Mitsui, and T. Ae, Ext. Abstracts of the 8th Internat. Workshop on Future Electron Devices - Three-Dimensional ICs and Nanometer Functional Devices, Kochi, Japan, p. 113, 1990Google Scholar
  39. 8.36.
    T. Ae, Ext. Abstracts of the 5th Internat. Workshop on Future Electron Devices - Three-Dimensional Integration, Miyagi-Zao, Japan, p. 55, 1988Google Scholar
  40. 8.37.
    Y. Inoue, T. Ipposhi, T. Wada, K. Ichinose, T. Nishimura, and Y. Akasaka, Proceedings Symp. VLSI Technology, p. 39, 1989Google Scholar
  41. 8.38.
    Y. Akasaka, Ext. Abstracts of the 8th Internat. Workshop on Future Electron Devices - Three-Dimensional ICs and Nanometer Functional Devices, Kochi, Japan, p. 9, 1990Google Scholar
  42. 8.39.
    T. Kunio, K. Oyama, Y. Hayashi, and M. Moritomo, Tech. Digest of International Electron Device Meeting (IEDM), p. 837, 1989Google Scholar
  43. 8.40.
    K. Yamazaki, Y.Itoh, A.Wada, and Y. Tomita, Ext. Abstracts of the 8th Internat. Workshop on Future Electron Devices - Three-Dimensional ICs and Nanometer Functional Devices, Kochi, Japan, p. 105, 1990Google Scholar
  44. 8.41.
    K. Kioi, S. Toyoyama, and M. Koba, Tech. Digest of International Electron Device Meeting (IEDM), p. 66, 1988Google Scholar
  45. 8.42.
    S. Toyoyama, K. Kioi, K. Shirakawa, T. Shinozaki, and Ohtake, Ext. Abstracts of the 8th Internat. Workshop on Future Electron Devices - Three-Dimensional ICs and Nanometer Functional Devices, Kochi, Japan, p. 109, 1990Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Jean-Pierre Colinge
    • 1
  1. 1.IMECBelgium

Personalised recommendations