Skip to main content

Stochastic Realization of Stationary Processes: State-Space, Matrix Fraction and ARMA Forms

  • Chapter
Perspectives in Control Theory

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 2))

  • 235 Accesses

Abstract

This paper discusses results from the stochastic realization theory of second order stochastic process. The forward and backward stochastic state-space representation are derived and transfer relations are given to obtain their associated matrix fraction description and ARMA forms. The correspondence among these realizations are elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. (1974), Stochastic Theory of Minimal Realization, IEEE Transactions on Automatic Control AC-19, pp. 667–674.

    Article  Google Scholar 

  2. Akaike, H. (1975), Markovian Representation of Stochastic Processes by Canonical Variables, SIAM Journal of Control 13, pp. 162–173.

    Article  Google Scholar 

  3. Anderson, B.D.O. (1967), A System Theory Criterion for Positive Real Matrices, SIAM Journal of Control 5, pp. 171–172.

    Google Scholar 

  4. Anderson, B.D.O. (1967), An Algebraic Solution to the Spectral Factorization Problem, IEEE Transactions on Automatic Control AC-12, pp. 410–414.

    Article  Google Scholar 

  5. Anderson, B.D.O., and T. Kailath (1979), Forwards, Backwards and Dynamically Reversible Markovian Models of Second-Order Processes, IEEE Transactions on Circuits and Systems CAS-26, pp. 956–965.

    Article  Google Scholar 

  6. Bokor, J. and L. Keviczky (1982), Structural Properties and Structure Determination of Vector Difference Equations, International Journal of Control 36, pp.461–475.

    Article  Google Scholar 

  7. Bokor, J. and L. Keviczky (1987), ARMA Canonical Forms Obtained from Constructibility Invariants, International Journal of Control 45, pp.861–873.

    Article  Google Scholar 

  8. Bokor J., Cs. Bányász and L. Keviczky (1989) Realization of Stochastic Processes in State-Space MFD and ARMA Forms, in “Proceedings of the IEEE Conference on Control and Applications, ICCON ’89,” Jerusalem, pp. WC-5–4.

    Google Scholar 

  9. Caines, P.E. (1988), “Linear Stochastic Systems,” John Wiley & Sons.

    Google Scholar 

  10. Caines, P.E. and D. Delchamps (1980), Splitting Subspaces, Spectral Factorization and the Positive Real Equation: Structural Features of the Stochastic Realization Problem, in “Proceedings of the IEEE Conference on Decision and Control,” Albuquerque, NM, pp. 358–362.

    Google Scholar 

  11. Deistler, M. (1983), The Structure of ARMA Systems and its Relation to Estimation, in “Geometry and Identification,” Caines, P.E. and R. Hermann (Eds.), Mathematical Sciences Press, Brookline, MA, pp. 49–61.

    Google Scholar 

  12. Deistler, M. and M. Gevers (1989), Properties of the Parametrization of Monic ARMAX Systems, Automatica 25, pp.87–96.

    Article  Google Scholar 

  13. Desai, U.B., and Pal, D. (1984), A Transformation Approach to Stochastic Model Reduction, IEEE Transactions on Automatic Control AC-29, pp.1097–1100.

    Article  Google Scholar 

  14. Faurre, P.L. (1976), Stochastic Realization Algorithms, in “System Identification: Advances and Case Studies,” Mehra, R.K. and D.R. Lainiotis (Eds.), Academic Press, New York, pp. 1–25.

    Chapter  Google Scholar 

  15. Forney, G.D. (1975), Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems, SIAM Journal of Control 13, pp.493–520.

    Article  Google Scholar 

  16. Gevers, M. and V. Wertz (1984), Uniquely Identifiable State-Space and ARMA Parametrization for Multivariable Linear Systems, Automatica 20, pp.333–347.

    Article  Google Scholar 

  17. Gevers, M. (1986), ARMA Models, Their Kronecker Indices and Their McMillan Degree, International Journal of Control 43, pp.1745–1761.

    Article  Google Scholar 

  18. Gevers, M. and V. Wertz (1987), Techniques for the selection of identifiable parametrizations for multivariable linear systems, in “Control and Dynamic Systems, Vol. XXVI,” C.T. Leondes (Ed.), Academic Press, pp. 35–86.

    Google Scholar 

  19. Guidorzi, R.P. (1975), Canonical Structures in The Identification of Multivariable Systems, Automatica 11, pp.361–374.

    Article  Google Scholar 

  20. Guidorzi, R.P. (1981), Invariants and Canonical Forms for Systems: Structural and Parametric Identification, Automatica 17, pp.117–133.

    Article  Google Scholar 

  21. Hannan, E.J., and M. Deistler (1988), “The Statistical Theory of Linear Systems,” John Wiley & Sons, New York.

    Google Scholar 

  22. Ho, L. and R.E. Kalman (1965), Effective Construction of Linear State Variable Models from Input/Output Data, in “Proceedings of the 3rd Allerton Conference,” pp. 449–459.

    Google Scholar 

  23. Janssen, P. (1987), MFD Models and Time Delays; Some Consequences for identification, International Journal of Control 45, pp.1179–1196.

    Article  Google Scholar 

  24. Janssen, P. (1988), General Results on the McMillan Degree and Kronecker Indices of ARMA and MFD models, To appear in the International Journal of Control.

    Google Scholar 

  25. Kailath, T. (1980), “Linear Systems,” Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  26. Kalman, R.E., P. Falb and M. Arbib (1969), “Topics in Mathematical System Theory,” McGraw-Hill, New York.

    Google Scholar 

  27. Lindquist, A., and G. Picci (1977), On the structure of minimal splitting subspaces in Stochastic realization Theory, in “Proceedings of the Conference on Decision and Control New Orleans, La.,” pp. 42–48.

    Google Scholar 

  28. Lindquist, A., and G. Picci (1979), On the Stochastic Realization Problem, SIAM Journal of Control Theory 17, pp.365–389.

    Article  Google Scholar 

  29. Lindquist, A., and G. Picci (1981), State Space Models for Gaussian Stochastic Processes, in “Stochastic Systems: The Mathematics of Filtering and Identification and Applications,” Hazewinkel, M. and J.C. Willems (Eds.), Reidel, Dordrecht, pp. 169–204.

    Chapter  Google Scholar 

  30. Lindquist, A., and Pavon, M. (1984), On the Structure of State-Space Models for Discrete-Time Stochastic Vector Processes, IEEE Transactions on Automatic Control AC-29, pp.418–432.

    Article  Google Scholar 

  31. Ljung, L. and T. Kailath (1976), Backwards Markovian Models for Second-Order Stochastic Processes, IEEE Transactions on Information Theory IT-22, pp.488–491.

    Article  Google Scholar 

  32. Pavon, M. (1980), Stochastic Realizations and Invariant Directions of Matrix Riccati Equations, SIAM Journal of Control and Optimatization 18, pp.155–180.

    Article  Google Scholar 

  33. Picci, G. (1976), Stochastic Realization of Gaussian Processes, Proc. IEEE 64, pp.112–122.

    Article  Google Scholar 

  34. Popov, V.M. (1972), Invariant Description of Linear Time Invariant Controllable Systems, SIAM Journal of Control 10, pp.252–264.

    Article  Google Scholar 

  35. Rozanov, Yu. A. (1967), “Stacionary Random Processes,” Holden-Day, San-Francisco.

    Google Scholar 

  36. Sidhu, G.S., and Desai, U.B. (1976), New Smoothing Algorithms Based on Reversed-time Lumped Model, IEEE Transactions on Automatic Control, pp.538–541.

    Google Scholar 

  37. Verghese, G., and Kailath, T.(1979), A Further Note on Backwards Markovian Models, IEEE Transactions on Information Theory IT-25, 121–124; Correction to the above paper in ibid, IT-25, p. 50.

    Article  Google Scholar 

  38. Wiener, N. (1958), The Prediction Theory of Multivariate Stochastic Processes, Part I: The regularity condition, Acta Mathematica 98, pp.111–150;

    Article  Google Scholar 

  39. Wiener, N. (1958), The Prediction Theory of Multivariate Stochastic Processes, Part II: The linear predictor, Acta Mathematica 99, pp.93–137.

    Article  Google Scholar 

  40. Willems, J.C. (1986), From Time Series to Linear Systems, Part I, Automatica 22, pp.561–580.

    Article  Google Scholar 

  41. Willems, J.C. (1986), From Time Series to Linear Systems, Part II, Automatica 22, pp.675–694.

    Article  Google Scholar 

  42. Willems, J.C. (1986), From Time Series to Linear Systems, Part III, Automatica 23, pp.87–115.

    Article  Google Scholar 

  43. Wolovich, W.A. (1974), “Linear Multivariable Systems,” Applied Mathematical Sciences, No. 11, Springer- Verlag, New York.

    Book  Google Scholar 

  44. Wolovich, W.A. and H. Elliott (1983), Discrete Models for Linear Multivariable Systems, International Journal of Control 38, pp.337–357.

    Article  Google Scholar 

  45. Youla, D.C. (1961), On the factorization of Rational Matrices, IEEE Transactions on Information Theory IT-7, pp.172–189.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keviczky, L., Bokor, J. (1990). Stochastic Realization of Stationary Processes: State-Space, Matrix Fraction and ARMA Forms. In: Perspectives in Control Theory. Progress in Systems and Control Theory, vol 2. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-2105-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2105-8_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-2107-2

  • Online ISBN: 978-1-4757-2105-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics