Input-Output Representations



Our aim in this chapter is to derive explicit expressions relating the inputs u directly to the outputs y.


Solution Curve Bilinear System Output Invariance Volterra Series Volterra Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BdPK71]
    C. Bruni, G. di Pillo, and G. Koch. On the mathematical models of bilinear systems. Ricerche di Automatica, 2:11–26, 1971.Google Scholar
  2. [Bro76]
    R.W. Brockett. Volterra series and geometric control theory. Automatica, 12:167–176, 1976.Google Scholar
  3. [Che77]
    K.T. Chen. Iterated path integrals. Bull. Amer. Math. Soc., 83:831–879, 1977.Google Scholar
  4. [CMP88]
    G. Conte, C.M. Moog, and A. Perdon. Un théorème sur la représentation entrée-sortie d’un système nonlinéaire. C.R. Acad. Sci. Paris, Sér. I, 307:363–366, 1988.Google Scholar
  5. [Cro81]
    P.E. Crouch. Dynamical realizations of finite Volterra series. SIAM J. Contr. Optimiz., 19:177–202, 1981.Google Scholar
  6. [Fli73]
    M. Fliess. Sur la réalisation des systèmes dynamiques bilinéaires. C.R. Acad. Sci. Paris, A-277:923–926, 1973.Google Scholar
  7. [Fli80]
    M. Fliess. A note on Volterra series expansions for nonlinear differential systems. IEEE Trans. Aut. Contr., 25:116–117, 1980.Google Scholar
  8. [Fli81]
    M. Fliess. Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull. Soc. Math. France, 109:3–40, 1981.Google Scholar
  9. [Fli83]
    M. Fliess. Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives. Invent. Math., 71:521–537, 1983.Google Scholar
  10. [Fli89]
    M. Fliess. Automatique et corps différentiels. Forum Math., 1:227–238, 1989.Google Scholar
  11. [FLLL83]
    M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarrigue. An algebraic approach to nonlinear functional expansions. IEEE Trans. Circ. Syst., CAS- 30:554–570, 1983.Google Scholar
  12. [Gil77]
    E.G. Gilbert. Functional expansions for the response of nonlinear differential systems. IEEE Trans. Aut. Contr., 22:909–921, 1977.Google Scholar
  13. [Gla89]
    S.T. Glad. Nonlinear state space and input-output descriptions using differential polynomials. In J. Descusse, M. Fliess, A. Isidori, and D. Leborgne, editors, New Trends in Nonlinear Control Theory, volume 122 of Lect. Notes Contr. Inf. Sci., pages 182–189. Springer, Berlin, 1989.Google Scholar
  14. [Hir81]
    R.M. Hirschorn. (A,B)-invariant distributions and disturbance decoupling of nonlinear systems. SIAM J. Contr., 19:1–19, 1981.Google Scholar
  15. [IKGM81]
    A. Isidori, A.J. Krener, C. Gori Giorgi, and S. Monaco. Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans. Aut. Contr., AC-26:331–345, 1981.Google Scholar
  16. [Isi85]
    A. Isidori. Nonlinear Control Systems: An Introduction, volume 72 of Lect. Notes Contr. Inf. Sci. Springer, Berlin, 1985.Google Scholar
  17. [Jak80]
    B. Jakubczyk. Existence and uniqueness of realizations of nonlinear systems. SIAM J. Contr. Optimiz., 18:455–471, 1980.Google Scholar
  18. [LK78]
    C. Lesiak and A.J. Krener. The existence and uniqueness of Volterra series for nonlinear systems. IEEE Trans. Aut. Contr., AC-23:1090–1095, 1978.Google Scholar
  19. [NC83]
    D. Normand-Cyrot. Théorie et pratique des systèmes nonlinéaires en temps discret. Thése de doctorat d’etat, Université de Paris Sud, 1983.Google Scholar
  20. [Res]
    W. Respondek. From state-space representation to differential equations in inputs and outputs. paper presented at the IFAC Symposium on Nonlinear Control Systems Design, Capri, Italy, 1989.Google Scholar
  21. [Rug81]
    W.J. Rugh. Nonlinear System Theory: the Volterra-Wiener approach. Johns Hopkins Press, Baltimore, 1981.Google Scholar
  22. [Sch61]
    M.P. Schützenberger. On the definition of a family of automata. Inform. Control, 4:245–270, 1961.Google Scholar
  23. [Sch80]
    M. Schetzen. The Volterra and Wiener theories of nonlinear systems. Wiley, New York, 1980.Google Scholar
  24. [Son79]
    E. Sontag. Polynomial response maps, volume 13 of Lect. Notes Contr. Inf. Sci. Springer, Berlin, 1979.Google Scholar
  25. [Sus77]
    H.J. Sussmann. Existence, and uniqueness of minimal realizations of nonlinear systems. Math. Systems Theory, 10:263–284, 1977.Google Scholar
  26. [vdS87]
    A.J. van der Schaft. On realization of nonlinear systems described by higher-order differential equations. Math. Syst. Theory, 19:239–275, 1987. Correction 20:305–306, 1987.Google Scholar
  27. [vdS89]
    A.J. van der Schaft. Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outputs. Systems Control Lett., 812:151–160, 1989.Google Scholar
  28. [Wil79]
    J.C. Willems. System theoretic models for the analysis of physical systems. Ricerche di Automatica, 10:71–106, 1979.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990, Corrected printing 2016 1990

Authors and Affiliations

  1. 1.Dynamics and Control GroupEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations