Advertisement

Controlled Invariance and Decoupling for General Nonlinear Systems

  • Henk Nijmeijer
  • Arjan van der Schaft
Chapter

Abstract

In Chapters 7–11 we have confined ourselves to affine nonlinear control systems. The aim of the present chapter is to generalize the main results obtained to general smooth nonlinear dynamics.

Keywords

Nonlinear System Vector Bundle Implicit Function Theorem Extended System Invariant Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bro77].
    R.W. Brockett. Control theory and analytical mechanics. In C.Martin and R. Hermann, editors, Geometric Control Theory, volume VII of Lie groups: History, Frontiers and Applications, pages 1–46. Math. Sci. Press., Brookline, 1977.Google Scholar
  2. [Bro80].
    R.W. Brockett. Global descriptions of nonlinear control problems; vector bundles and nonlinear control theory. manuscript, 1980.Google Scholar
  3. [CvdS87].
    P.E. Crouch and A.J. van der Schaft. Variational and Hamiltonian Control Systems, volume 101 of Lect. Notes Contr. Inf. Sci. Springer, Berlin, 1987.Google Scholar
  4. [LU88].
    A. de Luca and G. Ulivi. Dynamic decoupling in voltage frequency controlled induction motors. In A. Bensoussan and J.L. Lions, editors, Analysis and Optimization of Systems, volume 111 of Lect. Notes Contr. Inf. Sci., pages 127–137. Springer, 1988.Google Scholar
  5. [NS84].
    H. Nijmeijer and J.M. Schumacher. Input-output decoupling of nonlinear systems with an application to robotics. In A. Bensoussan and J.L. Lions, editors, Analysis and Optimization of Systems, Part II, volume 63 of Lect. Notes Contr. Inf. Sci., pages 391–411. Springer, Berlin, 1984.Google Scholar
  6. [NvdS82a].
    H. Nijmeijer and A.J. van der Schaft. Controlled invariance by static output feedback for nonlinear systems. System Control Lett., 2:39–47, 1982.Google Scholar
  7. [NvdS82b].
    H. Nijmeijer and A.J. van der Schaft. Controlled invariance for nonlinear systems. IEEE Trans. Aut. Contr., AC-27:904–914, 1982.Google Scholar
  8. [NvdS83].
    H. Nijmeijer and A.J. van der Schaft. The disturbance decoupling problem for nonlinear control systems. IEEE Trans. Aut. Contr., AC-28:621–623, 1983.Google Scholar
  9. [NvdS85].
    H. Nijmeijer and A.J. van der Schaft. Partial symmetries for nonlinear systems. Math. Syst. Th., 18:79–96, 1985.Google Scholar
  10. [vdS82].
    A.J. van der Schaft. Observability and controllability for smooth nonlinear systems. SIAM J. Contr. Optimiz., 20:338–354, 1982.Google Scholar
  11. [vdS84a].
    A.J. van der Schaft. Linearization and input-output decoupling for general nonlinear systems. System Control Lett., 5:27–33, 1984.Google Scholar
  12. [vdS84b].
    A.J. van der Schaft. System theoretic descriptions of physical systems. CWI Tracts 3, CWI, Amsterdam, 1984.Google Scholar
  13. [vdS88].
    A.J. van der Schaft. On clamped dynamics of nonlinear systems. In C.I. Byrnes, C.F. Martin, and R.E. Saeks, editors, Analysis and Control of Nonlinear Systems, pages 499–506. North-Holland, Amsterdam, 1988.Google Scholar
  14. [Wil79].
    J.C. Willems. System theoretic models for the analysis of physical systems. Ricerche di Automatica, 10:71–106, 1979.Google Scholar
  15. [YI73].
    K. Yano and S. Ishihara. Tangent and cotangent bundles. Dekker, New York, 1973.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990, Corrected printing 2016 1990

Authors and Affiliations

  1. 1.Dynamics and Control GroupEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations