Advertisement

Controlled Invariant Submanifolds and Nonlinear Zero Dynamics

  • Henk Nijmeijer
  • Arjan van der Schaft
Chapter

Abstract

In Chapter 3.3 we have seen that the notion of an A-invariant subspaces\( \mathcal{V} \subset {\mathbb{R}}^n \) for a linear set of differential equations \( \dot{x} = Ax,x \in {\mathbb{R}}^{n} \), can be conveniently generalized to nonlinear differential equations \( \dot{x} = f(x),x \in M \), by introducing the notion of an invariant foliation or invariant (constant dimensional and involutive) distribution.

Keywords

Regular Point Nonlinear Control System Constant Rank Feedback Stabilization Inverse System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BI84].
    C. Byrnes and A. Isidori. A frequency domain philosophy for nonlinear systems, with applications to stabilization and adaptive control. In Proc. 23rd IEEE Conf. Decision Control, Las Vegas, pages 1569–1573, 1984.Google Scholar
  2. [BI85].
    C. Byrnes and A. Isidori. Global feedback stabilization of nonlinear systems. In Proc. 24th Conf. Decision Control, Ft. Lauderdale, pages 1031–1037, 1985.Google Scholar
  3. [BI86].
    C. Byrnes and A. Isidori. Asymptotic expansions, root-loci and the global stability of nonlinear feedback systems. In M. Fliess and M. Hazewinkel, editors, Algebraic and Geometric Methods in Nonlinear Control Theory, volume 29 of Math. Appl., pages 159–179. Reidel, Dordrecht, 1986.Google Scholar
  4. [BI88].
    C. Byrnes and A. Isidori. Local stabilization of minimum-phase nonlinear systems. Systems Control Lett., 11:9–17, 1988.Google Scholar
  5. [BI89].
    C. Byrnes and A. Isidori. New results and examples in nonlinear feedback stabilization. Systems Control Lett., 12:437–442, 1989.Google Scholar
  6. [BI91].
    C. Byrnes and A. Isidori. On the attitude stabilization of rigid spacecraft. Automatica, 27:87–95, 1991.Google Scholar
  7. [dB89].
    M.D. di Benedetto. A condition for the solvability of the nonlinear model matching problem. In J. Descusse, M. Fliess, A. Isidori, and D. Leborgne, editors, New Trends in Nonlinear Theory, volume 122 of Lect. Notes Contr. Inf. Sci., pages 102–115. Springer, Berlin, 1989.Google Scholar
  8. [dBGM89].
    M.D. di Benedetto, J.W. Grizzle, and C.H. Moog. Rank invariants of nonlinear systems. SIAM J. Contr. Optimiz., 27:658–672, 1989.Google Scholar
  9. [DP88].
    B. D’Andrea and L. Praly. About finite nonlinear zeros for decouplable systems. Systems Control Lett., 10:103–109, 1988.Google Scholar
  10. [Hir79].
    R.M. Hirschorn. Invertibility of multivariable nonlinear control systems. IEEE Trans. Automat. Contr., AC-24:855–865, 1979.Google Scholar
  11. [IKGM81].
    A. Isidori, A.J. Krener, C. Gori-Giorgi, and S. Monaco. Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans. Automat. Contr., AC-26:331–345, 1981.Google Scholar
  12. [IM88].
    A. Isidori and C.H. Moog. On the nonlinear equivalent of the notion of transmission zeros. In C.I. Byrnes and A. Kurzhanski, editors, Modelling and Adaptive Control, volume 105 of Lect. Notes Contr. Inf. Sci., pages 146–158. Springer, Berlin, 1988.Google Scholar
  13. [KI80].
    A.J. Krener and A. Isidori. Nonlinear zero distributions. In Proc. 19th IEEE Conf. Decision Control, Albuquerque, pages 665–668, 1980.Google Scholar
  14. [Mar85].
    R. Marino. High-gain feedback in nonlinear control systems. Int. J. Contr., 42:1369–1385, 1985.Google Scholar
  15. [Moo88].
    C.H. Moog. Nonlinear decoupling and structure at infinity. Math. Control Systems, 1:257–268, 1988.Google Scholar
  16. [Nij86].
    H. Nijmeijer. Right-invertibility for a class of nonlinear control systems: a geometric approach. Systems Control Lett., 2:125–132, 1986.Google Scholar
  17. [Sil69].
    L.M. Silverman. Inversion of multivariable linear systems. IEEE Trans. Automat. Contr., AC-14:270–276, 1969.Google Scholar
  18. [Sin81].
    S.N. Singh. A modified algorithm for invertibility in nonlinear systems. IEEE Trans. Automat. Contr., AC-26:595–598, 1981.Google Scholar
  19. [vdS86a].
    A.J. van der Schaft. On feedback control of Hamiltonian systems. In C.I. Byrnes and A. Lindquist, editors, Theory and Applications of Nonlinear Control Systems, pages 273–290. North-Holland, Amsterdam, 1986.Google Scholar
  20. [vdS86b].
    A.J. van der Schaft. Realizations of higher-order nonlinear differential equations. In Proc. 25th IEEE Conf. Decision Control, Athens, pages 1569–1573, 1986.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990, Corrected printing 2016 1990

Authors and Affiliations

  1. 1.Dynamics and Control GroupEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations