Renal Blood Flow

  • Richard J. Roman
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 107)


The microcirculation of the kidney is unique. Most organs are relatively homogeneously prefused by arteries and veins that are interconnected by a capillary bed that supplies oxygen and nutrients to the tissue. In contrast, the perfusion of the kidney is highly heterogeneous. Tissue blood flows range from 700 ml • min-1 • 100g-1 of tissue in the renal cortex to around 50 ml • min-1 • 100g-1 of tissue in the renal papilla [1–5]. Moreover, there are structural differences in the microvasculature in various regions of the kidney, and each region contains specialized vascular structures that serve the excretory function of the kidney [6, 7]. In this regard, the renal vasculature not only supplies the metabolic needs of the tissue, but it also ultrafilters solutes and water into the tubular system, reabsorbs tubular fluid, preserves the osmotic gradient in the renal medulla, and regulates tubular function by influencing the composition of, and the hydrostatic pressure in, the renal interstitium.


Renal Blood Flow Renal Cortex Outer Medulla Tissue Blood Flow Electromagnetic Flowmeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brenner, B.M., R. Zatz, and I. Ichikawa. 1986. The renal circulations. In The Kidney, Brenner, B.M., Rector, F.C., eds. Philadelphia: W.B. Saunders Company, pp 93–123.Google Scholar
  2. 2.
    Mimran, A. 1987. Regulation of renal blood flow. J Cardiovasc Pharmacol 10(Suppl 5):51–59.Google Scholar
  3. 3.
    Cupples, W. A. 1986. Renal medullary blood flow: its measurement and physiology. Can J Physiol Pharmacol 64:873–880.PubMedCrossRefGoogle Scholar
  4. 4.
    Knox, F. G., E. L. Ritman, and J.C. Romero. 1984. Intrarenal distribution of blood flow: Evolution of a new approach to measurement. Kidney Int 25:473–479.PubMedCrossRefGoogle Scholar
  5. 5.
    Aukland, K. 1980. Methods for measuring renal blood flow: Total flow and regional distribution. Annu Rev Physiol 42:543–555.PubMedCrossRefGoogle Scholar
  6. 6.
    Zimmerhackl, B. L., C. R. Robertson, and R.L. Jamison. 1987. The medullary microcirculation. Kidney Int 31:641–647.PubMedCrossRefGoogle Scholar
  7. 7.
    Kriz, W. 1981. Structural organization of the renal medulla: Comparative and functional aspects. Am J Physiol 241:R3–R16.PubMedGoogle Scholar
  8. 8.
    McNay, J. L., and Y. Abe. 1970. Pressure-dependent heterogeneity of renal cortical hemodynamics in dogs. Circ Res 27:571–587.PubMedCrossRefGoogle Scholar
  9. 9.
    Katz, M. A., R.C. Blantz, F.C. Rector Jr., and D.W. Seldin. 1971. Measurement of intrarenal blood flow. I. Analysis of microsphere method. Am J Physiol 220:1903–1913.PubMedGoogle Scholar
  10. 10.
    Bankir, L., M.M. Trinh Trang Tan, and J.P. Grunfeld. 1979. Measurement of glomerular blood flow in rabbits and rats. Erroneous findings with 15 µm microspheres. Kidney Int 15:126–133.PubMedCrossRefGoogle Scholar
  11. 11.
    Wolgast, M. 1968. Studies on the regional renal blood flow with labeled red cells and small beta sensitive semiconductor detectors. Acta Physiol Scand Suppl 31:1–109.Google Scholar
  12. 12.
    Kramer, K., K. Thurau, and P. Deetjen. 1960. Hamodynamik des Nierenmarks. I. Mitteilung Capillare Passagezeit, Blutvolumen, Durchblutung, Gewebshamatokrit und O2Verbrauch des Nierenmarks in situ. Plugers Arch 270:251–269.CrossRefGoogle Scholar
  13. 13.
    Thurau, K. 1964. Renal hemodynamics. Am J Med 36:698–719.PubMedCrossRefGoogle Scholar
  14. 14.
    Lilienfield, L.S., H.C. Maganzini, and M.H. Bauer. 1961. Blood flow in the renal medulla. Circ Res 9:614–617.PubMedCrossRefGoogle Scholar
  15. 15.
    Solez, K., E.C. Kramer, J. A. Fox, and R. H. Hepinstall. 1974. Medullary plasma flow and intravascular leukocyte accumulation in acute renal failure. Kidney Int 6:24–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Rasmussen, S. N. 1978. Red cell and plasma flows to the inner medulla of the rat kidney. Pflugers Arch 373:153–159.PubMedCrossRefGoogle Scholar
  17. 17.
    Holliger, C., K. V. Lemley, S.L. Schmitt, F. L. Thomas, C. R. Robertson, and R.L. Jamison. 1983. Direct determination of vasa recta blood flow in the rat renal papilla. Circ Res 53:401–413.PubMedCrossRefGoogle Scholar
  18. 18.
    Zimmerhackl, B., C. R. Robertson, and R.L. Jamison. 1985. Fluid uptake in the renal papilla by vasa recta estimated by two different methods simultaneously. Am J Physiol 248:F347-F353.PubMedGoogle Scholar
  19. 19.
    Zimmerhackl, B., J. Tinsman, R.L. Jamison, and C. R. Robertson. 1985. Use of digital cross-correlation for on-line determination of single vessel blood flow in the mammalian kidney. Microvasc Res 30:63–74.PubMedCrossRefGoogle Scholar
  20. 20.
    Cohen, H.J., D.J. Marsh, and B. Kayser. 1983. Autoregulation in the vasa recta of the rat kidney. Am J Phvsiol 245:F32–F40.Google Scholar
  21. 21.
    Stern, M.D. 1975. In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58.PubMedCrossRefGoogle Scholar
  22. 22.
    Stern, M.D., P. D. Bowen, R. Parma, R.W. Osgood, R.L. Bowman, and J. H. Stein. 1987. Measurement of renal cortical and medullary blood flow by laser-Doppler spectroscopy in the rat. Am J Phvsiol 236:F80–F87.Google Scholar
  23. 23.
    Stern, M. D., D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway Jr., H. R. Keiser, and R.L. Bowman. 1977. Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol 232:H441–H448.PubMedGoogle Scholar
  24. 24.
    Bonner, R., and R. Nossal 1981. Model for laser-Doppler measurements of blood flow in tissue. Appl Optics 20:2097–2107.CrossRefGoogle Scholar
  25. 25.
    Nilsson, G.E. 1984. Signal processor for laser-Doppler tissue flow meters. Med Biol Eng Comp 22:343–348.CrossRefGoogle Scholar
  26. 26.
    Roman, R.J., and C. Smits. 1985. Laser-Doppler determination of papillary blood flow in young and adult rats. Am J Physiol 251:F115–F124.Google Scholar
  27. 27.
    Smits, G.J., R.J. Roman, and J.H. Lombard. 1986. Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow. J Appl Physiol 61:666–672.PubMedGoogle Scholar
  28. 28.
    Takezawa, K., A.W. Cowley Jr., M. Skelton, and R.J. Roman. 1987. Atriopeptin II alters renal medullary hemodynamics and the pressure-diuresis response in rats. Am J Physiol 252: F992–F1002.PubMedGoogle Scholar
  29. 29.
    Roman, R.J., M. L. Kaldunski, A. G. Scicli, and O. A. Carretero. 1988. Influence of kinins and angiotensin II on the regulation of papillary blood flow. Am J Physiol 255:F690–F698.PubMedGoogle Scholar
  30. 30.
    Hansell, P., and H.R. Ulfendahl. 1986. Atriopeptins and renal cortical and papillary blood flow. Acta Physiol Scand 127:349–357.PubMedCrossRefGoogle Scholar
  31. 31.
    Roman, R.J., and E. Lianos. Influence of renal prostaglandins on papillary blood flow, renal interstitial pressure and the pressure natriuretic response. Hypertension 13, in press.Google Scholar
  32. 32.
    Thomas, C. E., and L.G. Navar. 1988. Influence of calcium channel blockade on the renal vasoconstrictive actions of platlet activating factor. Kidney Int 33:413.Google Scholar
  33. 33.
    Nygren, A., H.R. Ulfendahl, P. Hansell, and U. Erikson. 1988. Effects of intravenous contrast media on cortical and medullary blood flow in the rat. Invest Radiol 23:753–761.PubMedCrossRefGoogle Scholar
  34. 34..
    Pollock, D.M., and W.J. Aredshorst. Tubuloglomerular feedback and blood flow autoregulation during DA1-induced renal vasodilation. Am J Physiol, in press.Google Scholar
  35. 35.
    Spelman, F. A., P. Å. Öberg, and C. Astley. 1986. Localized neural control of blood flow in the renal cortex of the anesthetized baboon. Acta Physiol Scand 127:437–441.PubMedCrossRefGoogle Scholar
  36. 36.
    Roman, R.J., and M.L. Kaldunski. 1988. Renal cortical and papillary blood in spontaneously hypertensive rats. Hypertension 11:657–663.PubMedCrossRefGoogle Scholar
  37. 37.
    Roman, R.J., A.W. Cowley Jr., J. Garcia-Estañ, and J. L. Lombard. 1988. Pressure-diuresis in volume-expanded rats: Cortical and medullary hemodynamics. Hypertension 12:168– 76.Google Scholar
  38. 38.
    Nilsson, G.E., T. Tenland, and P.Å. Öberg. 1980. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27:597–604.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Richard J. Roman

There are no affiliations available

Personalised recommendations