Skip to main content

Utilization of UV and IR Supercontinua in Gas-Phase Subpicosecond Kinetic Spectroscopy

  • Chapter
  • 445 Accesses

Abstract

Through the work of photochemists extending over many decades, there now exists a wealth of information on the various reactions that photoexcited gas phase molecules undergo. Most of this information relates to the product molecules that are formed, either as the direct result of a primary photochemical act, such as photodissociation, or through subsequent secondary reactions, involving collisions with other molecules in the gas. Recently, there has been an extensive effort directed at determining the exact energy distributions of the primary products formed in photodissociation. With the use of nanosecond tunable-laser techniques, such as laser-induced fluorescence (LIF) and coherent anti-Stokes Raman spectroscopy (CARS), scientists have successfully determined the nascent electronic, vibrational, and rotational energy distributions of various diatomic fragments such as CN, OH, NO, and O2 that are directly formed in the photodissociation of many kinds of molecules. The ready availability of high-quality, tunable, nanosecond lasers has made determination of the above-mentioned collisionless energy distributions a relatively straightforward process. The determination of product translational energies has long effectively been handled by angularly resolved time-of-flight (TOF) spectroscopy, or by sub-Doppler resolution spectroscopy, including a recently improved version of the latter, velocity-aligned Doppler spectroscopy (Xu et al., 1986).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhmanov, S.A., K.N. Drabovich, A.P. Sukhorukov, and A.K. Shchednova (1972) Combined effects of molecular relaxation and medium dispersion in stimulated Raman scattering of ultrashort light pulses. Soy. Phys. JETP 35, 279–286.

    Google Scholar 

  • Alfano, R.R. and S.L. Shapiro (1970a) Emission in the region 4000 to 7000 A via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587.

    Article  Google Scholar 

  • Alfano, R.R. and S.L. Shapiro (1970b) Observation of self-phase modulation and small scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594.

    Article  Google Scholar 

  • Avouris, Ph., D.S. Bethune, J.R. Lankard, J.A. Ors, and P.P. Sorokin (1981) Time-resolved infrared spectral photography: study of laser-initiated explosions in HN3. J. Chem. Phys. 74, 2304–2312.

    Article  Google Scholar 

  • Bethune, D.S., J.R. Lankard, P.P. Sorokin, R.M. Plecenik, and Ph. Avouris (1981) Time-resolved infrared study of bimolecular reactions between tert-butyl radicals. J. Chem. Phys. 75, 2231–2236.

    Article  Google Scholar 

  • Bethune, D.S., A.J. Schell-Sorokin, J.R. Lankard, M.M.T. Loy, and P.P. Sorokin (1983) Time-resolved study of photo-induced reactions of chlorine dioxide. In B.A. Garetz and J.R. Lombardi (eds.), Advances in Laser Spectroscopy, vol. 2, pp. 1–43. Wiley, New York.

    Google Scholar 

  • Bucksbaum, P.A., J. Bokor, R.H. Storz, and J.C. White (1982) Amplification of ultra-short pulses in krypton fluoride at 248 nm. Opt. Lett. 7, 399–401.

    Article  Google Scholar 

  • Burnham, R. and N. Djeu (1978) Efficient Raman conversion of XeCI-laser radiation in metal vapors. Opt. Lett. 3, 215–217.

    Article  Google Scholar 

  • Carman, R.L., F. Shimizu, C.S. Wang, and N. Bloembergen (1970) Theory of Stokes pulse shapes in transient stimulated Raman scattering. Phys. Rev. A 2, 60–72.

    Article  Google Scholar 

  • Carrick, P.G. and P.C. Engelking (1984) The electronic emission spectrum of methylnitrene. J. Chem. Phys. 81, 1661–1665.

    Article  Google Scholar 

  • Corkum, P.B. and R.S. Taylor (1982) Picosecond amplification and kinetic studies of XeCI. IEEE J. Quantum Electron. QE, 18, 1962–1975.

    Article  Google Scholar 

  • Corkum, P.B., C. Rolland, and T. Srinivasan-Rao (1986a) Supercontinuum generation in gases: a high order nonlinear optics phenomenon. In G.R. Fleming and A.E. Siegman (eds.), Ultrafast Phenomena V, pp. 149–152. Springer-Verlag, New York.

    Google Scholar 

  • Corkum, P.B., C. Rolland, and T. Srinivasan-Rao (1986b) Supercontinuum generation in gases. Phys. Rev. Lett. 57, 2268–2271.

    Article  Google Scholar 

  • Cotter, D. and W. Zapka (1978) Efficient Raman conversion of XeC1 excimer laser radiation in Ba vapour. Opt. Commun. 26, 251–255.

    Article  Google Scholar 

  • Dantus, M., M.J. Rosker, and A.H. Zewail (1987) Real-time femtosecond probing of “transition states” in chemical reactions. J. Chem. Phys. 87, 2395–2397.

    Article  Google Scholar 

  • Davidovits, P. and J.A. Bellisio (1969) Ultraviolet absorption cross sections for the thallium halide and silver halide vapors. J. Chem. Phys. 50, 3560–3567.

    Article  Google Scholar 

  • Demuynck, J., D.J. Fox, Y. Yamaguchi, and H.F. Schaefer III (1980) Triplet methyl nitrene: an indefinitely stable species in the absence of collisions. J. Am. Chem. Soc. 102, 6204–6207.

    Article  Google Scholar 

  • Egger, H., T.S. Luk, K. Boyer, D.F. Muller, H Pummer, T. Srinivasan, and C.K. Rhodes (1982) Picosecond, tunable ArF* excimer laser source. Appl. Phys. Lett. 41, 1032–1034.

    Article  Google Scholar 

  • Fluegel, B., N. Peyghambarian, G. Olbright, M. Lindberg, S.W. Koch, M. Joffre, D. Hulin, A. Migus, and A. Antonetti (1987) Femtosecond studies of coherent transients in semiconductors. Phys. Rev. Lett. 59, 2588–2591.

    Article  Google Scholar 

  • Fork, R.L., B.I. Greene, and C.V. Shank (1981) Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl. Phys. Lett. 38, 671–672.

    Article  Google Scholar 

  • Fork, R.L., C.V. Shank, R.T. Yen, and C. Hirlimann (1982) Femtosecond continuum generation. In K.B. Eisenthal, R.M. Hochstrasser, W. Kaiser, and A. Laubereau (eds.), Picosecond Phenomena III, pp. 10–13. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Fork, R.L., C.V. Shank, C. Hirlimann, R. Yen, and W.J. Tomlinson (1983) Femtosecond white-light continuum pulses. Opt. Lett. 8, 1–3.

    Article  Google Scholar 

  • Franken, Th., D. Perner, and M.W. Bosnali (1970) UV-absorptionsspektren von methyl-und äthylnitren mittels pulsradiolyse in der gasphase. Z. Naturforsch. A 25, 151–152.

    Google Scholar 

  • Glownia, J.H., G. Arjavalingam, and P.P. Sorokin (1985) The potential of DABCO for two-photon amplification. J. Chem. Phys. 82, 4086–4101.

    Article  Google Scholar 

  • Glownia, J.H., J. Misewich, and P.P. Sorokin (1986a) Ultrafast ultraviolet pump-probe apparatus. J. Opt. Soc. Am. B 3, 1573–1579.

    Article  Google Scholar 

  • Glownia, J.H., G. Arjavalingam, P.P. Sorokin, and J.E. Rothenberg (1986b) Amplification of 350-fsec pulses in XeC1 excimer gain modules. Opt. Lett. 11, 79–81.

    Article  Google Scholar 

  • Glownia, J.H., J. Misewich, and P.P. Sorokin (1986c) New excitation and probe continuum sources for subpicosecond absorption spectroscopy. In G.R. Fleming and A.E. Siegman (eds.), Ultrafast Phenomena V, pp. 153–156. Springer-Verlag, New York.

    Google Scholar 

  • Glownia, J.H., J. Misewich, and P.P. Sorokin (1986d) Amplification in a XeCI excimer gain module of 200-fsec UV pulses derived from a colliding pulse mode locked (CPM) laser system. Proc. Soc. Photo-Opt. Instrum. Eng. 710, 92–98.

    Google Scholar 

  • Glownia, J.H., J. Misewich, and P.P. Sorokin (1987a) Subpicosecond time-resolved infrared spectral photography. Opt. Lett. 12, 19–21.

    Article  Google Scholar 

  • Glownia, J.H., J. Misewich, and P.P. Sorokin (1987b) 160-fsec XeCI excimer amplification system. J. Opt. Soc. Am. B 4, 1061–1065.

    Google Scholar 

  • Glownia, J.H., J. Misewich, and P.P. Sorokin (1987c) Subpicosecond IR transient absorption spectroscopy: measurement of internal conversion rates in DABCO vapor. Chem. Phys. Lett. 139, 491–495.

    Article  Google Scholar 

  • Halpern, A.M., J.L. Roebber, and K. Weiss (1968) Electronic structure of cage amines: absorption spectra of triethylenediamine and quinuclidine. J. Chem. Phys. 49, 1348–1357.

    Article  Google Scholar 

  • Hamada, Y., A.Y. Hirikawa, and M. Tsuboi (1973) The structure of the triethylenediamine molecule in an excited electronic state. J. Mol. Spectrosc. 47, 440–456.

    Article  Google Scholar 

  • Hartmann, H.-J. and A. Laubereau (1984) Transient infrared spectroscopy on the picosecond time-scale by coherent pulse propagation. J. Chem. Phys. 80, 4663–4670.

    Article  Google Scholar 

  • Li, Q.X., T. Jimbo, P.P. Ho, and R.R. Alfano (1986) Temporal distribution of picosecond super-continuum generated in a liquid measured by a streak camera. Appl. Opt. 25, 1869–1871.

    Article  Google Scholar 

  • Mack, M.E., R.L. Carman, J. Reintjes, and N. Bloembergen (1970) Transient stimulated rotational and vibrational Raman scattering in gases. Appl. Phys. Lett. 16, 209–211.

    Article  Google Scholar 

  • Margenau, H. (1939) Van der Waals forces. Rev. Mod. Phys. 11, 1–35.

    Article  MATH  Google Scholar 

  • Michielson, S., A.J. Merer, S.A. Rice, F.A. Novak, K.F. Freed, and Y. Hamada (1981) A study of the rotational state dependence of predissociation of a polyatomic molecule: the case of C102. J. Chem. Phys. 74, 3089–3101.

    Article  Google Scholar 

  • Misewich, J., J.H. Glownia, and P.P. Sorokin (1988a) Measurement with subpicosecond resolution of the frequency sweep of an ultrashort supercontinuum. In Conference on Lasers and Electro-Optics Technical Digest Series 1988, vol. 7, pp. 420–421. Optical Society of America, Washington, D.C.

    Google Scholar 

  • Misewich, J., J.H. Glownia, J.E. Rothenberg, and P.P. Sorokin (1988b) Subpicosecond UV kinetic spectroscopy; Photolysis of thallium halide vapors. Chem. Phys. Lett. 150, 374–379.

    Article  Google Scholar 

  • Nakatsuka, H., D. Grischkowsky, and A.C. Balant (1981) Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett. 47, 910–913.

    Article  Google Scholar 

  • Nikolaus, B. and D. Grischkowsky (1983) 90-fsec tunable optical pulses obtained by two-stage pulse compression. Appl. Phys. Lett. 43, 228–230.

    Google Scholar 

  • Parker, D.H. and Ph. Avouris (1978) Multiphoton ionization spectra of two caged amines. Chem. Phys. Lett. 53, 515–520.

    Article  Google Scholar 

  • Parker, D.H. and Ph. Avouris (1979) Multiphoton ionization and two-photon fluorescence excitation spectroscopy of triethylenediamine. J. Chem. Phys. 71, 1241–1246.

    Article  Google Scholar 

  • Schwarzenbach, A.P., T.S. Luk, I.A. McIntyre, V. Johann, A. McPherson, K. Boyer, and C.K. Rhodes (1986) Subpicosecond KrF* excimer-laser source. Opt. Lett. 11, 499–501.

    Article  Google Scholar 

  • Smith, M.A., J.W. Hager, and S.C. Wallace (1984) Two-color laser photoionization spectroscopy in a collisionless free jet expansion: spectroscopy and excited-state dynamics of diazabicyclooctane. J. Phys. Chem. 88, 2250–2255.

    Article  Google Scholar 

  • Szatmári, S. and F.P. Schäfer (1983) Simple generation of high-power, picosecond, tunable excimer laser pulses. Opt. Commun. 48, 279–283.

    Article  Google Scholar 

  • Szatmári, S. and F.P. Schäfer (1984a) Generation of intense, tunable ultrashort pulses in the ultraviolet using a single excimer pump laser. In D.H. Auston and K.B. Eisenthal (eds.), Ultrafast Phenomena IV, pp. 56–59. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Szatmári, S. and F.P. Schäfer (1984b) Excimer-laser-pumped psec-dye laser. Appl. Phys. B 33, 95–98.

    Article  Google Scholar 

  • Szatmári, S., B. Racz, and F.P. Schäfer (1987a) Bandwidth limited amplification of 220 fs pulses in XeCI. Opt. Commun. 62, 271–276.

    Article  Google Scholar 

  • Szatmári, S., F.P. Schäfer, E. Müller-Horsche, and W. Mückenheim (1987b) Hybrid dye-excimer laser system for the generation of 80 fs, 900 GW pulses at 248 nm. Opt. Commun. 63, 305–309.

    Article  Google Scholar 

  • Valdmanis, J.A., R.L. Fork, and J.P. Gordon (1985) Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. Opt. Lett. 10, 131–133.

    Article  Google Scholar 

  • van Veen, N.J.A., M.S. deVries, T. Baller, and A.E. deVries (1981) Photofragmentation of thallium halides. Chem. Phys. 55, 371–384.

    Article  Google Scholar 

  • Xu, Z., B. Koplitz, S. Buelow, D. Bauch, and C. Wittig (1986) High-resolution kinetic energy distributions via Doppler shift measurements. Chem. Phys. Lett. 127, 534–540.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clownia, J.H., Misewich, J., Sorokin, P.P. (1989). Utilization of UV and IR Supercontinua in Gas-Phase Subpicosecond Kinetic Spectroscopy. In: Alfano, R.R. (eds) The Supercontinuum Laser Source. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2070-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2070-9_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2072-3

  • Online ISBN: 978-1-4757-2070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics