Advertisement

Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses

  • P. L. Baldeck
  • P. P. Ho
  • R. R. Alfano

Abstract

Self-phase modulation (SPM) is the principal mechanism responsible for the generation of picosecond and femtosecond white-light supercontinua. When an intense ultrashort pulse propagates through a medium, it distorts the atomic configuration of the material, which changes the refractive index. The pulse phase is time modulated, which causes the generation of new frequencies. This phase modulation originates from the pulse itself (self-phase modulation). It can also be generated by a copropagating pulse (cross-phase modulation).

Keywords

Pump Pulse Modulation Instability Stimulate Raman Scattering Probe Pulse Ultrashort Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, G.P. (1987) Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59, 880–883.CrossRefGoogle Scholar
  2. Agrawal, G.P. and M.J. Potasek (1986) Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength. Phys. Rev. 3, 1765–1776.Google Scholar
  3. Agrawal, G.P., P.L. Baldeck, and R.R. Alfano (1988) Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers. Conference abstract # MW3, in Digest of the 1988 OSA annual meeting. Optical Society of America, Washington, D.C. Opt. Lett. 14, 137–139 (1989).Google Scholar
  4. Agrawal, G.P., P.L. Baldeck, and R.R. Alfano (1989a) Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers. Submitted for publication in Phys. Rev. A.Google Scholar
  5. Agrawal, G.P., P.L. Baldeck, and R.R. Alfano (1989b) Modulation instability induced by cross-phase modulation in optical fibers. Phys. Rev. A (April 1989 ).Google Scholar
  6. Alfano, R.R. and P.P. Ho (1988) Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation. IEEE J. Quantum Electron. 24, 351–364.CrossRefGoogle Scholar
  7. Alfano, R.R., and S.L. Shapiro (1970) Emission in the region 4000–7000 A via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587. Observation of self-phase modulation and small scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594.Google Scholar
  8. Alfano, R.R., Q. Li, T. Jimbo, J.T. Manassah, and P.P. Ho (1986) Induced spectral broadening of a weak picosecond pulse in glass produced by an intense ps pulse. Opt. Lett. 11, 626–628.CrossRefGoogle Scholar
  9. Alfano, R.R., Q.Z. Wang, T. Jimbo, and P.P. Ho (1987a) Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals. Phys. Rev. A35, 459–462.CrossRefGoogle Scholar
  10. Alfano, R.R., P.L. Baldeck, F. Raccah, and P.P. Ho (1987b) Cross-phase modulation measured in optical fibers. Appl. Opt. 26, 3491–3492.CrossRefGoogle Scholar
  11. Alfano, R.R., P.L. Baldeck, and P.P. Ho (1988) Cross-phase modulation and induced-focusing of optical nonlinearities in optical fibers and bulk materials. Conference abstract # ThA3, In Digest of the OSA topical meeting on nonlinear optical properties of materials Optical Society of America, Washington, D.C.Google Scholar
  12. Auston, D.H. (1977) In Ultrafast Light Pulses S.L. Shapiro, ed. Springer-Verlag, Berlin, 1977.Google Scholar
  13. Ayral, J.L., J.P. Pochelle, J. Raffy, and M. Papuchon (1984) Optical Kerr coefficient measurement at 1.15 pm in single-mode optical fibers. Opt. Commun. 49, 405–408.CrossRefGoogle Scholar
  14. Baldeck, P.L. and R.R. Alfano (1987) Intensity effects on the stimulated four-photon spectra generated by picosecond pulses in optical fibers. Conference abstract # FQ7Google Scholar
  15. March meeting of the American Physical Society, New York, New York, 1987; J. Lightwave Technol. L.T-5, 1712–1715.Google Scholar
  16. Baldeck, P.L., F. Raccah, and Alfano R.R. (1987a) Observation of self-focusing in optical fibers with picosecond pulses. Opt. Lett. 12, 588–589.CrossRefGoogle Scholar
  17. Baldeck, P.L., P.P. Ho, and R.R. Alfano (1987b) Effects of self, induced-, and cross-phase modulations on the generation of picosecond and femtosecond white light supercontinua. Rev. Phys. Appl. 22, 1677–1694.CrossRefGoogle Scholar
  18. Baldeck, P.L., P.P. Ho, and R.R. Alfano (1987c) Experimental evidences for cross-phase modulation, induced-phase modulation and self-focusing on picosecond pulses in optical fibers. Conference abstract # TuV4, in Digest of the 1987 OSA annual meeting. Optical Society of America, Washington, D.C.Google Scholar
  19. Baldeck, P.L., F. Raccah, R. Garuthara, and R.R. Alfano (1987d) Spectral and temporal investigation of cross-phase modulation effects on picosecond pulses in singlemode optical fibers. Proceeding paper # TuC4, International Laser Science conference ILS-III, Atlantic City, New Jersey, 1987.Google Scholar
  20. Baldeck, P.L., R.R. Alfano, and G.P. Agrawal (1988a) Induced-frequency shift of copropagating pulses. Appl. Phys. Lett. 52, 1939–1941.CrossRefGoogle Scholar
  21. Baldeck, P.L., R.R. Alfano, and G.P. Agrawal (1988b) Observation of modulation instability in the normal dispersion regime of optical fibers. Conference abstract # MBB7, in Digest of the 1988 OSA annual meeting. Optical Society of America, Washington, D.C.Google Scholar
  22. Baldeck P.L., R.R. Alfano, and G.P. Agrawal (1988c) Induced-frequency shift, induced spectral broadening and optical amplification of picosecond pulses in a single-mode optical fiber. Proceeding paper # 624, Electrochemical Society symposium on nonlinear optics and ultrafast phenomena, Chicago, Illinois, 1988.Google Scholar
  23. Baldeck, P.L., R.R. Alfano, and G.P. Agrawal (1988d) Generation of sub-100–fsec pulses at 532 nm from modulation instability induced by cross-phase modulation in single-mode optical fibers. Proceeding paper # PD2, in Ultrafast Phenomena 6. Springer-Verlag, Berlin.Google Scholar
  24. Baldeck, P.L., R.R. Alfano (1989) Cross-phase modulation: a new technique for controlling the spectral, temporal and spatial properties of ultrashort pulses. SPIE Proceedings of the 1989 Optical Science Engineering conference, Paris, France.Google Scholar
  25. Chraplyvy, A.R. and J. Stone (1984) Measurement of cross-phase modulation in coherent wavelength-division multiplexing using injection lasers. Electron. Lett. 20, 996–997.CrossRefGoogle Scholar
  26. Chraplyvy, A.R., D. Marcuse and P.S. Henry (1984) Carrier-induced phase noise in angle-modulated optical-fiber systems. J. Lightwave Technol. LT-2, 6–10.Google Scholar
  27. Cornelius, P. and L. Harris (1981) Role of self-phase modulation in stimulated Raman scattering from more than one mode. Opt. Lett. 6, 129–131.CrossRefGoogle Scholar
  28. Dianov, E.M., A.Y. Karasik, P.V. Mamyshev, G.I. Onishchukov, A.M. Prokhorov, M.F. Stel’Makh, and A.A. Formichev (1984) Picosecond structure of the pump pulse in stimulated Raman scattering in optical fibers. Opt. Quantum Electron. 17, 187.Google Scholar
  29. Duguay, M.A. and J.W. Hansen (1969) An ultrafast light gate. Appl. Phys. Lett. 15, 192–194.CrossRefGoogle Scholar
  30. Dziedzic, J.M., R.H. Stolen, and A. Ashkin (1981) Optical Kerr effect in long fibers. Appl. Opt. 20, 1403–1406.CrossRefGoogle Scholar
  31. French, P.M.W., A.S.L. Gomes, A.S. Gouveia-Neto, and J.R. Taylor (1986) Picosecond stimulated Raman generation, pump pulse fragmentation, and fragment compression in single-mode optical fibers. IEEE J. Quantum Electron. QE-22, 2230.Google Scholar
  32. Gersten J., R.R. Alfano, and M. Belie (1980) Combined stimulated Raman scattering and continuum self-phase modulation. Phys. Rev. A # 21, 1222–1224.Google Scholar
  33. Gomes, A.S.L., W. Sibbet, and J.R. Taylor (1986) Spectral and temporal study of picosecond-pulse propagation in a single-mode optical fibers. Appl. Phys. B # 39, 44–46.Google Scholar
  34. Gomes, A.S.L., V.L. da Silva, and J.R. Taylor (1988) Direct measurement of nonlinear frequency chirp of Raman radiation in single-mode optical fibers using a spectral window method. J. Opt. Soc. Am. B# 5, 373–380.Google Scholar
  35. Gouveia-Neto, A.S., M.E. Faldon, A.S.B. Sombra, P.G.J. Wigley, and J.R. Taylor (1988a) Subpicosecond-pulse generation through cross-phase modulation-induced modulation instability in optical fibers. Opt. Lett. 12, 901–906.CrossRefGoogle Scholar
  36. Gouveia-Neto, A.S., M.E. Faldon, and J.R. Taylor (1988b) Raman amplification of modulation instability and solitary-wave formation. Opt. Lett. 12, 1029–1031.CrossRefGoogle Scholar
  37. Grudinin, A.B., E.M. Dianov, D.V. Korobkin, A.M. Prokhorov, V.N. Serkinand, and D.V. Khaidarov (1987) Decay of femtosecond pulses in single-mode optical fibers. Pis’ma Zh. Eksp. Teor. Fiz. 46, 175–177.Google Scholar
  38. Grudinin, A.B., E.M. Dianov, D.V. Korobkin, A.M. Prokhorov, V.N. Serkinand, and D.V. Khaidarov (1987) Decay of femtosecond pulses in single-mode optical fibers. Sov. Phys. JETP Lett. 46, 221, 225.Google Scholar
  39. Hasegawa, A. (1975). Plasma Instabilities and Nonlinear Effects. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  40. Ho, P.P., Q.Z. Wang, D. Ji, and R.R. Alfano (1988) Propagation of harmonic crossphase-modulation pulses in ZnSe. Appl. Phys. Lett. 111–113.Google Scholar
  41. Hook, A.D. Anderson, and M. Lisak (1988) Soliton-like pulses in stimulated Raman scattering. Opt. Lett. 12, 114–116.Google Scholar
  42. Imoto, N., S. Watkins, and Y. Sasaki (1987) A nonlinear optical-fiber interferometer for nondemolition measurement of photon number. Optics Commun. 61, 159–163.CrossRefGoogle Scholar
  43. Islam, M.N., L.F. Mollenauer, R.H. Stolen (1986) Fiber Raman amplification soliton laser, in Ultrafast Phenomena 5. Springer-Verlag, Berlin.Google Scholar
  44. Islam, M.N., L.F. Mollenauer, R.H. Stolen, J.R. Simson, and H.T. Shang (1987a) Cross-phase modulation in optical fibers. Opt. Lett. 12, 625–627.CrossRefGoogle Scholar
  45. Islam, M.N., L.F. Mollenauer, R.H. Stolen, J.R. Simson, and H.T. Shang (1987b) Amplifier/compressor fiber Raman lasers. Opt. Lett. 12, 814–816.CrossRefGoogle Scholar
  46. Jaskorzynska, B. and D. Schadt (1988) All-fiber distributed compression of weak pulses in the regime of negative group-velocity dispersion. IEEE J. Quantum Electron. QE-24, 2117–2120.Google Scholar
  47. Johnson, A.M., R.H. Stolen, and W.M. Simpson (1986) The observation of chirped stimulated Raman scattered light in fibers. In Ultrafast Phenomena 5. Springer-Verlag, Berlin.Google Scholar
  48. Keiser, G. (1983) In Optical Fiber Communications. McGraw-Hill, New York. Kelley, P.L. (1965) Self-focusing of optical beams. Phys. Rev. Lett. 15, 1085.Google Scholar
  49. Kimura, Y., K.I. Kitayama, N. Shibata, and S. Seikai (1986) All-fibre-optic logic “AND” gate. Electron. Lett. 22, 277–278.CrossRefGoogle Scholar
  50. Kitayama, K.I., Y. Kimura, and S. Seikai (1985a) Fiber-optic logic gate. Appl. Phys. Lett. 46, 317–319.CrossRefGoogle Scholar
  51. Kitayama, K.I., Y. Kimura, K. Okamoto, and S. Seikai (1985) Optical sampling using an all-fiber optical Kerr shutter. Appl. Phys. Lett. 46, 623–625.CrossRefGoogle Scholar
  52. Levenson, M.D., R.M. Shelby, M. Reid, and D.F. Walls (1986) Quantum nondemoli- tion detection of optical quadrature amplitudes. Phys. Rev. Lett. 57, 2473–2476.CrossRefGoogle Scholar
  53. Lin, C. and M.A. Bosh (1981) Large Stokes-shift stimulated four-photon mixing in optical fibers. Appl. Phys. Lett. 38, 479–481.CrossRefGoogle Scholar
  54. Lu, Hian-Hua, Yu-Lin Li, and Jia-Lin Jiang (1985) On combined self-phase modulation and stimulated Raman scattering in fibers. Opt. Quantum Electron. 17, 187.CrossRefGoogle Scholar
  55. Manassah, J.T. (1987a) Induced phase modulation of the Raman pulse in optical fibers. Appl. Opt. 26, 3747–3749.CrossRefGoogle Scholar
  56. Manassah, J.T. (1987b) Time-domain characteristics of a Raman pulse in the presence of a pump. Appl. Opt. 26, 3750–3751.Google Scholar
  57. Manassah, J.T. (1987c) Amplitude and phase of a pulsed second-harmonic signal. J. Opt. Soc. Am. B# 4, 1235–1240.Google Scholar
  58. Manassah, J.T. (1988) Pulse compression of an induced-phase modulated weak signal. Opt. Lett. 13, 752–755.CrossRefGoogle Scholar
  59. Manassah, J.T. and O.R. Cockings (1987) Induced phase modulation of a generated second-harmonic signal. Opt. Lett. 12, 1005–1007.CrossRefGoogle Scholar
  60. Manassah, J.T., M. Mustafa, R.R. Alfano, and P.P. Ho (1985) Induced supercontinuum and steepening of an ultrafast laser pulse. Phys. Lett. 113A, 242–247.CrossRefGoogle Scholar
  61. Monerie, M. and Y. Durteste (1987) Direct interferometric measurement of nonlinear refractive index of optical fibers by cross-phase modulation. Electron. Lett. 23, 961–962.CrossRefGoogle Scholar
  62. Morioka, T., M. Saruwatari, and A. Takada (1987) Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode optical fibers. Electron. Lett. 23, 453–454.CrossRefGoogle Scholar
  63. Nakashima, T., M. Nakazawa, K. Nishi, and H. Kubuta (1987) Effect of stimulated Raman scattering on pulse-compression characteristics. Opt. Lett. 12, 404–406.CrossRefGoogle Scholar
  64. Schadt, D., B. Jaskorzynska, and U. Osterberg (1986) Numerical study on combined stimulated Raman scattering and self-phase modulation in optical fibers influenced by walk-off between pump and Stokes pulses. J. Opt. Soc. Am. B # 3, 1257–1260.Google Scholar
  65. Schadt, D. and B. Jaskorzynska (1987a) Frequency chirp and spectra due to self-phase modulation and stimulated Raman scattering influenced by walk-off in optical fibers. J. Opt. Soc. Am. B # 4, 856–862.Google Scholar
  66. Schadt, D. and B. Jaskorzynska (1987b) Generation of short pulses from CW light by influence of cross-phase modulation in optical fibres. Electron. Lett. 23, 1091–1092.CrossRefGoogle Scholar
  67. Schadt, D. and B. Jaskorzynska (1988) Suppression of the Raman self-frequency shift by cross-phase modulation. J. Opt. Soc. Am. B # 5, 2374–2378.Google Scholar
  68. Shen, Y.R. (1984) In The Principles of Nonlinear Optics Wiley, New York.Google Scholar
  69. Shimizu, F. and B.P. Stoicheff (1969) Study of the duration and birefringence of self-trapped filaments in CS2. IEEE J. Quantum Electron. QE-5, 544.Google Scholar
  70. Stolen, R.H. (1975) Phase-matched stimulated four-photon mixing. IEEE J. Quantum Electron. QE-11, 213–215.Google Scholar
  71. Stolen, R.H. (1979) In Nonlinear properties of Optical fibers, S.E. Miller and A.G. Chynoweth, eds. Academic Press, New York, Chapter 5.Google Scholar
  72. Stolen, R.H. and A. Ashkin (1972) Optical Kerr effect in glass waveguide. Appl. Phys. Lett. 22, 294–296.CrossRefGoogle Scholar
  73. Stolen, R.H., M.A. Bosh, and C. Lin (1981) Phase matching in birefringent fibers. Opt. Lett. 6, 213–215.CrossRefGoogle Scholar
  74. Stolen, R.H. and A.M. Johnson (1986) The effect of pulse walk-off on stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. QE-22, 2230.Google Scholar
  75. Swartzlander, G.A., Jr., and A.E. Kaplan (1988) Self-deflection of laser beams in a thin nonlinear film. J. Opt. Soc. Am. B5, 765–768.Google Scholar
  76. Tai, K., A. Hasegawa, and A. Tornita (1986) Observation of modulation instability in optical fibers. Phys. Rev. Lett. 56, 135–138.CrossRefGoogle Scholar
  77. Tomlinson, W.J., R.H. Stolen, and A.M. Johnson (1985) Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 457–459.CrossRefGoogle Scholar
  78. Trillo, S., S. Wabnitz, E.M. Wright, and G.I. Stegeman (1988) Optical solitary waves induced by cross-phase modulation. Opt. Lett. 13, 871–873.CrossRefGoogle Scholar
  79. Washio, K., K. Inoue, and T. Tanigawa (1980) Efficient generation near-IR stimulated light scattering in optical fibers pumped in low-dispersion region at 1.3 mm. Electron. Lett. 16, 331–333.CrossRefGoogle Scholar
  80. Weiner, A.M., J.P. Heritage, and R.H. Stolen (1986) Effect of stimulated Raman scattering and pulse walk-off on self-phase modulation in optical fibers. In Digest of the Conference on Lasers and Electro-Optics. Optical Society of America, Washington, D.C., p. 246.Google Scholar
  81. Weiner, A.M., J.P. Heritage, and R.H. Stolen (1988) Self-phase modulation and optical pulse compression influenced by stimulated Raman scattering in fibers. J. Opt. Soc. Am. B5, 364–372.CrossRefGoogle Scholar
  82. White, I.H., R.V. Penty, and R.E. Epworth (1988) Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers. Electron. Lett. 24, 172–173.CrossRefGoogle Scholar
  83. Zysset B. and H.P. Weber (1986) Temporal and spectral investigation of Nd: YAG pulse compression in optical fibers and its application to pulse compression. In Digest of the Conference on Lasers and Electro-Optics. Optical Society of America, Washington, D.C., p. 182.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • P. L. Baldeck
  • P. P. Ho
  • R. R. Alfano

There are no affiliations available

Personalised recommendations