Supercontinuum Generation in Condensed Matter

  • Q. Z. Wang
  • P. P. Ho
  • R. R. Alfano


Supercontinuum generation, the production of intense ultrafast broadband “white light” pulses, arises from the propagation of intense picosecond or shorter laser pulses through condensed or gaseous media. Various processes are responsible for continuum generation. These are called self-, induced-, and cross-phase modulations and four-photon parametric generation. Whenever an intense laser pulse propagates through a medium, it changes the refractive index, which in turn changes the phase, amplitude, and frequency of the incident laser pulse. A phase change can cause a frequency sweep within the pulse envelope. This process has been called self-phase modulation (SPM) (Alfano and Shapiro, 1970a). Nondegenerate four-photon parametric generation (FPPG) usually occurs simultaneously with the SPM process (Alfano and Shapiro, 1970a). Photons at the laser frequency parametrically generate photons to be emitted at Stokes and anti-Stokes frequencies in an angular pattern due to the required phase-matching condition. When a coherent vibrational mode is excited by a laser, stimulated Raman scattering (SRS) occurs. SRS is an important process that competes and couples with SPM. The interference between SRS and SPM causes a change in the emission spectrum resulting in stimulated Raman scattering cross-phase modulation (SRS-XPM) (Gersten et al., 1980). A process similar to SRS-XPM occurs when an intense laser pulse propagates through a medium possessing a large second-order x 2 and third-order x 3 susceptibility.


Stimulate Raman Scattering Group Velocity Dispersion Nonlinear Refractive Index Liquid Argon Supercontinuum Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, G.P. and M.J. Potasek (1986) Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength. Phys. Rev. A 33, 1765–1776.Google Scholar
  2. Alfano, R.R. (1972) Interaction of picosecond laser pulses with matter. GTE Technical Report TR 72–330. Published as Ph.D. thesis at New York University, 1972.Google Scholar
  3. Alfano, R.R. (1986) The ultrafast superdcontinuum laser source. Proc. International Conference Laser ‘85. STS Press, McLean, Virigina, pp. 110–122.Google Scholar
  4. Alfano, R.R. and P.P. Ho (1988) Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation. IEEE J. Quantum Electron. QE-24, 351–363.Google Scholar
  5. Alfano, R.R. and S.L. Shapiro (1970a) Emission in the region 4000–7000 A via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587; Observation of self-phase modulation and small scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594; Direct distortion of electronic clouds of rare-gas atoms in intense electric fields. Phys. Rev. Lett. 24, 1219–1222.Google Scholar
  6. Alfano, R.R. and S.L. Shapiro (1970b) Picosecond spectroscopy using the inverse Raman effect. Chem. Phys. Lett. 8, 631–633.CrossRefGoogle Scholar
  7. Alfano, R.R., L. Hope, and S. Shapiro (1972) Electronic mechanism for production of self-phase modulation. Phys. Rev. A 6, 433–438.CrossRefGoogle Scholar
  8. Alfano, R.R., J. Gersten, G. Zawadzkas, and N. Tzoar (1974) Self-phase-modulation near the electronic resonances of a crystal. Phys. Rev. A 10, 698–708.CrossRefGoogle Scholar
  9. Alfano, R.R., P. Ho, P. Fleury, and H. Guggeneheim (1976) Nonlinear optical effects in antiferromagnetic KNiF3. Opt. Commun. 19, 261–264.CrossRefGoogle Scholar
  10. Alfano, R.R., Q. Li, T. Jimbo, J. Manassah, and P. Ho (1986) Induced spectral broadening of a weak picosecond pulse in glass produced by an intense ps pulse. Opt. Lett. 11, 626–628.CrossRefGoogle Scholar
  11. Alfano, R.R., Q.Z. Wang, T. Jimbo, and P.P. Ho (1987) Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals. Phys. Rev. A 35, 459–462.Google Scholar
  12. Alfano, R.R., Q.Z. Wang, D. Ji, and P.P. Ho (1989) Harmonic cross-phase-modulation in ZnSe. App. Phys. Lett. 54, 111–113.CrossRefGoogle Scholar
  13. Anderson, D. and M. Lisak (1983) Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393–1398.CrossRefGoogle Scholar
  14. Auston, D.H. (1977) In Ultrafast Light Pulses, S.L. Shapiro, ed., Springer,Verlag, New York.Google Scholar
  15. Baldeck, P.L., F. Raccah, and R.R. Alfano (1987a) Observation of self-focusing in optical fibers with picosecond pulses. Opt. Lett. 12, 588–589.CrossRefGoogle Scholar
  16. Baldeck, P.L., P.P. Ho, and R.R. Alfano (1987b) Effects of self-, induced-, and crossphase modulations on the generation of ps and fs white light supercontinuum. Rev. Phys. Appl. 22, 1877–1894.CrossRefGoogle Scholar
  17. Bloembergen, N. and P. Lallemand (1966) Complex intensity dependent index of refraction frequency broadening of stimulated Raman lines and stimulated Rayleigh scattering. Phys. Rev. Lett. 16, 81–84.CrossRefGoogle Scholar
  18. Bourkoff, E., W. Zhao, and R.I. Joseph (1987) Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion. Opt. Lett. 12, 272–274.Google Scholar
  19. Brewer, R.G. (1967) Frequency shifts in self-focused light. Phys. Rev. Lett. 19, 810.Google Scholar
  20. Brewer, R.G. and C.H. Lee (1968) Self-trapping with picosecond light pulses. Phys. Rev. Lett. 21, 267–270.Google Scholar
  21. Busch, G.E., R.P. Jones, and P.M. Rentzepis (1973) Picosecond spectroscopy using a picosecond continuum. Chem. Phys. Lett. 18, 178–185.CrossRefGoogle Scholar
  22. Chinn, S.R., H. Zeiger, and J. O’Connor (1971) Two-magnon Raman scattering and exchange interactions in antiferromagnetic KNiF3 and K2NiF4 and ferrimagnetic RbNiF3. Phys. Rev. B3, 1709–1735.Google Scholar
  23. Corkum, P., P. Ho, R. Alfano, and J. Manassah (1985) Generation of infrared super-continuum covering 3–14 pm in dielectrics and semiconductors. Opt. Lett. 10, 624–626.CrossRefGoogle Scholar
  24. Corkum, P.B., C. Rolland, and T. Rao (1986) Supercontinuum generation in gases. Phys. Rev. Lett. 57, 2268–2271.CrossRefGoogle Scholar
  25. Cornelius, P. and L. Harris (1981) Role of self-phase modulation in stimulated Raman scattering from more than one mode. Opt. Lett. 6, 129–131.Google Scholar
  26. DeMartini, F., C.H. Townes, T.K. Gustafson, and P.L. Kelly (1967) Self-steepening of light pulses. Phys. Rev. 164, 312–322.Google Scholar
  27. Dorsinville, R., P. Delfyett, and R.R. Alfano (1987) Generation of 3 ps pulses by spectral selection of the supercontinuum generated by a 30 ps second harmonic Nd:YAG laser pulse in a liquid. Appl. Opt. 27, 16–18.Google Scholar
  28. Fisher, R.A. and W. Bischel (1975) Numerical studies of the interplay wave laser pulse. J. Appl. Phys. 46, 4921–4934.Google Scholar
  29. Fisher, R.A., B. Suydam, and D. Yevich (1983) Optical phase conjugation for time domain undoing of dispersion self-phase modulation effects. Opt. Lett. 8, 611–613.CrossRefGoogle Scholar
  30. Fleury, P.A., W. Hayes, and H.J. Guggenheim (1975) Magnetic scattering of light in K(NiMg)F3. J. Phys. C: Solid State 8, 2183–2189.CrossRefGoogle Scholar
  31. Fork, R.L., C.V. Shank, C. Hirliman, R. Yen, and J. Tomlinson (1983) Femtosecond white-light continuum pulse. Opt. Lett. 8, 1–3.Google Scholar
  32. Fork, R.L., C.H. Brito Cruz, P.C. Becker, and C.V. Shank (1987) Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485.CrossRefGoogle Scholar
  33. Gersten, J., R. Alfano, and M. Belie (1980) Combined stimulated Raman scattering in fibers. Phys: Rev. A 21, 1222–1224.CrossRefGoogle Scholar
  34. Girodmaine, J.A. (1962) Mixing of light beams in crystals. Phys. Rev. Lett. 8, 19–20. Glownia, J., G. Arjavalingam, P. Sorokin, and J. Rothenberg (1986) Amplification of 350-fs pulses in XeC1 excimer gain modules. Opt. Lett. 11, 79–81.Google Scholar
  35. Goldberg, L. (1982) Broadband CARS probe using the picosecond continua. In Ultrafast Phenomena III. Springer-Verlag, New York, pp. 94–97.Google Scholar
  36. Gomes, A.S.L., A.S. Gouveia-Neto, J.R. Taylor, H. Avramopoulos, and G.H.C. New (1986) Optical pulse narrowing by the spectral windowing of self-phase modulated picosecond pulses. Opt. Commun. 59, 399.CrossRefGoogle Scholar
  37. Gustafson, T.K., I.P. Taran, H.A. Haus, J.R. Lifisitz, and P.L. Kelly (1969) Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments. Phys. Rev 177, 306–313.Google Scholar
  38. Gustafson, T.K., J. Taran, P. Kelley, and R. Chiao (1970) Selfmodulation of picosecond pulse in electro-optical crystals. Opt. Commun. 2, 17–21.CrossRefGoogle Scholar
  39. Hellwarth, R.W. (1970) Theory of molecular light scattering spectra using linear-dipole approximation. J. Chem. Phys. 52, 2128–2138.CrossRefGoogle Scholar
  40. Hellwarth, R.W., J. Cherlow, and T.T. Yang (1975) Origin and frequency dependence of nonlinear optical susceptibilities of glasses. Phys. Rev. B 11, 964–967.CrossRefGoogle Scholar
  41. Heritage, J., A. Weiner, and P. Thurston (1985) Picasecond pulse shaping by spectral phase and amplitude manipulation. Opt. Lett. 10, 609–611.CrossRefGoogle Scholar
  42. Ho, P.P. and R.R. Alfano (1978) Coupled molecular reorientational relaxation kinetics in mixed binary liquids directly measured by picosecond laser techniques. J. Chem. Phys. 68, 4551–4563.CrossRefGoogle Scholar
  43. Ho, P.P. and R.R. Alfano (1979) Optical Kerr effect in liquids. Phys. Rev. A 20, 2170–4564.CrossRefGoogle Scholar
  44. Ho, P.P., Q.X. Li, T. Jimbo, Y.L. Ku, and R.R. Alfano (1987) Supercontinuum pulse generation and propagation in a liqud carbon tetrachloride. Appl. Opt. 26, 2700–2702.CrossRefGoogle Scholar
  45. Ishida, Y., K. Naganuma, T. Yagima, and C. Lin (1984) Ultrafast self-phase modulation in a colliding pulse mode-locking ring dye laser. In Ultrafast Phenomena IV. Springer-Verlag, New York, pp. 69–71.Google Scholar
  46. Jimbo, T., V.L. Caplan, Q.X. Li, Q.Z. Wang, P.P. Ho, and R.R. Alfano (1987) Enhancement of ultrafast supercontinuum generation in water by addition of Zn’ and K+ cations. Opt. Lett. 12, 477–479.CrossRefGoogle Scholar
  47. Johnson, A., R. Stolen, and W. Simpson (1986) The observation of chirped stimulated Raman scattering light in fibers. In Ultrafast Phenomena V.G.R. Fleming and A.E. Siegman ed. Springer-Verlag, New York, pp. 160–163.Google Scholar
  48. Jones, W.J. and B.P. Stoicheff (1964) Inverse Raman spectra: induced absorption at optical frequencies. Phys. Rev. Lett. 13, 657–659.CrossRefGoogle Scholar
  49. Knox, K., R.G. Shulman, and S. Sugano (1963) Covalency effects in KNiF3. II. Optical studies. Phys. Rev. 130, 512–516.Google Scholar
  50. Knox, W., R. Fork, M. Dower, R. Stolen, and C Shank (1985) Optical pulse compression to 8-fs at 5-kHz repetition rate. Appl. Phys. Lett. 46, 1120–1121.CrossRefGoogle Scholar
  51. Kobayashi, T. (1979) Broadband picosecond light generation in phosphoric acid by a mode-locked laser. Opt. Commun. 28, 147–149.CrossRefGoogle Scholar
  52. Lallemand, P. (1966) Temperature variation of the width of stimulated Raman lines in liquids. Appl. Phys. Lett. 8, 276–277.CrossRefGoogle Scholar
  53. Levenson, M.D. and N. Bloembergen (1974) Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media. Phys. Rev. B 10, 4447–4463.CrossRefGoogle Scholar
  54. L, Q.X., T. Jimbo, P.P. Ho, and R.R. Alfano (1986) Temporal distribution of picosecond super-continuum generated in a liquid measured by a streak camera. Appl. Opt. 25, 1869–1871.CrossRefGoogle Scholar
  55. Lozobkin, V., A. Malytin, and A. Prohorov (1970) Phase self-modulation of Nd:glass radiation with mode-locking. JETP Lett. 12, 150–152.Google Scholar
  56. Magde, D. and M.W. Windsor (1974) Picosecond flash photolysis and spectroscopy: 3,3’-diethyloxadicarbocyanine iodide (DODCI). Chem. Phys. Lett. 27, 31–36.CrossRefGoogle Scholar
  57. Manassah, J.T., P.P. Ho, A. Katz, and R.R. Alfano (1984) Ultrafast supercontinuum laser source. Photonics Spectra 18 November, 53–59.Google Scholar
  58. Manassah, J.T., R.R., Alfano and M. Mustafa (1985a) Spectral distribution of an ultrashort supercontinuum laser source. Phys. Lett. A 107, 305–309.Google Scholar
  59. Manassah, J.T., M. Mustafa, R. Alfano, and P. Ho (1985b) Induced supercontinuum and steepening of an ultrafast laser pulse. Phys. Lett. 113A, 242–247.CrossRefGoogle Scholar
  60. Manassah, J.T., M. Mustafa, R.R. Alfano, and P.P. Ho (1986) Spectral extent and pulse shape of the supercontinuum for ultrashort laser pulse. IEEE J. Quantum Electron. QE-22, 197–204.Google Scholar
  61. Marcuse, D. (1980) Pulse distortion in single-mode optical fibers. Appl. Opt. 19, 1653–1660.CrossRefGoogle Scholar
  62. Masuhara, H. H. Miyasaka, A. Karen, N. Mataga, and Y. Tsuchiya (1983) Temporal characteristics of picosecond continuum as revealed by two-dimensional analysis of streak images. Opt. Commun. 4 426.Google Scholar
  63. McTague, J. P. Fleury, and D. DuPre (1969) Intermolecular light scattering in liquids. Phys. Rev. 188 303–308.Google Scholar
  64. Nakashima, N. and N. Mataga (1975) Picosecond flash photolysis and transient spectral measurements over the entire visible, near ultraviolet and near infrared regions. Chem. Phys. Lett. 35, 487–492.CrossRefGoogle Scholar
  65. Patel, C.K.N. and E.D. Shaw (1971) Tunable stimulated Raman scattering from mobile carriers in semiconductors. Phys. Rev. B 3, 1279–1295.Google Scholar
  66. Penzokfer, A., A. Laubereau, and W. Kasier (1973) Stimulated short-wave radiation due to single frequency resonances of P). Phys. Rev. Lett. 31, 863–866.CrossRefGoogle Scholar
  67. Potasek, M.J., G.P. Agrawal, and S.C. Pinault (1986) Analytical and numerical study of pulse broadening in nonlinear dispersive optical fibers. J. Opt. Soc. Am. B 3, 205–211.CrossRefGoogle Scholar
  68. Shank, C. (1983) Measurement of ultrafast phenomena in the femtosecond domain. Science 219, 1027.CrossRefGoogle Scholar
  69. Shank, C.V., R.L. Fork, R. Yen, and R.H. Stolen (1982) Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761–763.CrossRefGoogle Scholar
  70. Sharma, D.K., R.W. Yid, D.F. Williams, S.E. Sugamori, and L.L.T. Bradley (1976) Generation of an intense picosecond continuum in D2 O by a single picosecond 1.06 p pulse. Chem. Phys. Lett. 41, 460–465.CrossRefGoogle Scholar
  71. Shen, Y.R. (1966) Electrostriction, optical Kerr effect and self-focusing of laser beams. Phys. Lett. 20, 378.Google Scholar
  72. Shen, Y.R. (1984) The Principles of Nonlinear Optics. Wiley, New York.Google Scholar
  73. Shimizu, F. (1967) Frequency broadening in liquids by a short light pulse. Phys. Rev. Lett. 19, 1097–1100.CrossRefGoogle Scholar
  74. Stolen, R.H. and A.M. Johnson (1986) The effect of pulse walkoff on stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. QE-22, 2154–2160.Google Scholar
  75. Stolen, R.H. and C. Lin (1978) Self-phase modulation in silica optical fibers. Phys. Rev. A 17, 1448–1453.CrossRefGoogle Scholar
  76. Topp, M.R. and G.C. Orner (1975) Group velocity dispersion effects in picosecond spectroscopy. Opt. Commun. 13, 276.CrossRefGoogle Scholar
  77. Tzoar, N. and M. Jain (1981) Self-phase modulation in long-geometry waveguide. Phys. Rev. A 23, 1266–1270.CrossRefGoogle Scholar
  78. Walrafen, G.E. (1972) Stimulated Raman scattering and the mixture model of water structure. Adv. Mol. Relaxation Processes 3, 43–49.CrossRefGoogle Scholar
  79. Wang, Q.Z., D. Ji, Lina Yang, P.P. Ho, and R.R. Alfano (1989) Self-phase modulation in multimode optical fibers with modest high power. Produced by moderately high power picosecond pulses. Opt. Lett.,in press.Google Scholar
  80. Yablonovitch, E. and N. Bloembergen (1972) Avalanche ionization of the limiting diameter of filaments induced by light pulses in transparent media. Phys. Rev. Lett. 29, 907–910.CrossRefGoogle Scholar
  81. Yang, G. and Y.R. Shen (1984) Spectral broadening of ultrashort pulse in a nonlinear medium. Opt. Lett. 9, 510–512.CrossRefGoogle Scholar
  82. Yu, W., R. Alfano, C.L. Sam, and R.J. Seymour (1975) Spectral broadening of picosecond 1.06 pm pulse in KBr. Opt. Commun. 14, 344.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Q. Z. Wang
  • P. P. Ho
  • R. R. Alfano

There are no affiliations available

Personalised recommendations