Skip to main content

Excess Iodide Inhibits the Thyroid by Multiple Mechanisms

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 261))

Abstract

The many nonsubstrate effects of iodide in the thyroid appear to be due to at least four mechanisms: 1) a possible anion effect of iodide for which the supporting data are conflicting; 2) an inhibition of organic iodine formation (the so-called Wolff-Chaikoff effect); 3) the iodination of critical enzymes in the thyroid gland; and 4) the inhibition of cellular processes by iodinated products such as oxidized iodine itself, or an oxidation reaction involving iodine. The separation into these categories is not firm, but circumstantial evidence suggests that the mechanisms are different. In addition, high levels of iodide will saturate the iodide pump (Ki ≈3×10−5M) (1). In this case, however, the amounts of iodide which enter the thyroid cell remain large, despite transport saturation and are replaced by diffused iodide. Hence this subject will not be discussed here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Wolff, Congenital goiter with defective iodide transport, Endocrine Rev. 4: 240 (1983).

    CAS  Google Scholar 

  2. T. Onaya, T. Tomizawa, T. Yamada, and K. Shichijo, Further studies on inhibitory effect of excess iodide on thyroidal hormone release in the rat, Endocrinol. 79: 138 (1966).

    CAS  Google Scholar 

  3. I. Mahmoud, I. Colin, M-C, Many, and J-F, Denef. Direct toxic effect of iodide excess on iodine-deficient thyroid glands, Exp. Molec. Pathol. 44:259 (1986).

    Google Scholar 

  4. M.L. Maayan, S.H. Ingbar, Acute depletion of thyroid ATP and pyridine nucleotides following injection of iodine in the rat, Endocrinol. 86: 83 (1970).

    CAS  Google Scholar 

  5. E. Ogata, Y, Yoshitoshi, K, Nishiki, and S. Kobayashi, Dual effect of iodide IV on reduced pyridine nucleotides in rabbit thyroid in situ, Endocrinol. 90: 169 (1972).

    CAS  Google Scholar 

  6. L. Wartofsky, B. Ransil, S.H. Ingbar, Inhibition of iodine of the release of thyroxine from the thyroid gland of patients with thyrotoxicosis, J. Clin. Invest. 49:78 (1970).

    Google Scholar 

  7. K. Kasai, H. Suzuki, S-I, Shimoda, Effects of PTU and relatively small doses of iodide on early phase treatment of hyperthyroidism, Acta Endocrinol. 93: 315 (1980).

    CAS  Google Scholar 

  8. J.H. Marigold, A.K. Morgan, D.J. Earle, A.E. Young, and D.N. Croft, Lugol’s iodine: its effect on thyroid blood flow in patients with thyrotoxicosis, Br.J.Surg. 72: 45 (1985).

    CAS  Google Scholar 

  9. J. Wolff, I.L. Chaikoff, Plasma inorganic iodide as a homeostatic regulator of thyroid function, J.Biol.Chem. 174: 555 (1948).

    CAS  Google Scholar 

  10. J. Wolff, Iodide goiter and the pharmacologic effects of excess iodide, Am.J.Med. 47: 101 (1969).

    CAS  Google Scholar 

  11. K.D. Collins, M.W. Washabaugh, The Hofmeister effect and the behavior of water at interfaces, Quart. Rev. Biophys. 18:323 (1985).

    Google Scholar 

  12. W.D. Alexander, J. Wolff, Antigoitrogenic properties of certain goitrogens, in: “Current Topics in Thyroid Research”, C. Cassano, M. Andreoli, eds., Academic Press, New York (1965).

    Google Scholar 

  13. W.D. Alexander, J. Wolff, Thyroidal iodide transport VIII: Relation between transport, goitrogenic and antigoitrogenic properties of certain anions, Endocrinol. 78: 581 (1966).

    CAS  Google Scholar 

  14. T. Jolin, G. Morreale de Escobar, and F. Escobar del Rey, 6-Propyl-2-thiouracil vs KC104- -induced goiters, Endocrinol 83: 620 (1968).

    Google Scholar 

  15. M.E. Morton, I.L. Chaikoff, S. Rosenfeld, Inhibiting effect of inorganic iodide on the formation in vitro of thyroxine and diiodotyrosine by surviving thyroid tissue, J.Biol.Chem. 154: 381 (1944).

    CAS  Google Scholar 

  16. S.H. Ingbar, Autoregulation of the thyroid, Mayo Clinic Proc. 47:814 (1972).

    Google Scholar 

  17. S. Nagataki, Effect of excess quantities of iodide, in: “Handbook of Physiology”, Section 7, vol III, S.R. Geiger, ed., Am Physiol Soc, Washington, D.C. p 329 (1974).

    Google Scholar 

  18. J. Wolff, Mechanistic speculations on the iodide effect, in: “Dietary Iodine and Other Aetiological Factors in Hyperthyroidism” MRC Environmental Epidemiol. Unit Scientific Report, No. 9, Southampton p 18 (1987).

    Google Scholar 

  19. M.A. Pisarev, Thyroid autoregulation, J. Endocrinol Invest. 8:475 (1985).

    Google Scholar 

  20. W.E. Mayberry, J.E. Rall, and D. Bertoli, Kinetics of iodination: I. A comparison of the kinetics of iodination N-acetyl-L-tyrosine and N-acety1–3 -iodo-L-tyrosine, J.Am.Chem.Soc. 86: 5302 (1964).

    CAS  Google Scholar 

  21. A. Taurog, Thyroid peroxidase-catalyzed iodination of thyroglobulin; inhibition by excess iodide, Arch.Biochem.Biophys. 139:212 (1970).

    Google Scholar 

  22. J. Pommier, D. Deme, J. Nunez, Effect of iodide concentration on thyroxine synthesis catalyzed by thyroid peroxidase, Europ.J.Biochem. 37: 406 (1975).

    Google Scholar 

  23. J. Nunez, J. Pommier, Formation of thyroid hormones, Vitam.Horm. 39:175 (1982).

    Google Scholar 

  24. N. Abdelmoumene, J.M. Gavaret, J. Pommier, J. Nunez, A defective thyroid peroxidase in a case of Pendred’s syndrome, J.Mol.Med. 3:305 (1978).

    Google Scholar 

  25. S. Ohtaki, H. Nakagawa, S. Kimura, I. Yamazaki, Analysis of catalytic intermediates of hog thyroid peroxidase during its iodinating reaction, J.Biol.Chem. 256: 805 (1981).

    CAS  Google Scholar 

  26. M. Nakamura, I. Yamazaki, S. Ohtaki, and S. Nakumura, Characterization of one and two electron oxidations of glutathione coupled with lactoperoxidase and thyroid peroxidase reactions, J.Biol.Chem. 261: 13923 (1986).

    CAS  Google Scholar 

  27. H. Kohler, A. Taurog, H.B. Dunford, Spectral studies withL lactoperoxidase and thyroid peroxidase, Arch.Biochem.Biophys. 264:438 (1988).

    Google Scholar 

  28. J.L. Michot, J. Osty, and J. Nunez, Regulatory effects of iodide and thiocyanate on tyrosine oxidation catalyzed by thyroid peroxidase, Eur.J.Biochem. 107: 297 (1980).

    CAS  Google Scholar 

  29. F. Courtin, D. Deme, A. Virion, J.L. Michot, J. Pommier, J. Nunez, The role of lactoperoxidase-H202 compounds in the catalysis of thyroglobulin iodination and thyroid hormone synthesis, Eur.J.Biochem. 124: 603 (1982).

    CAS  Google Scholar 

  30. K. Yamamoto, L.J. DeGroot, Function of peroxidase and NADPH cytochrome c reductase during the Wolff-Chaikoff effect, Endocrinol 93: 822 (1973).

    CAS  Google Scholar 

  31. P. Chiraseveenuprapund, I.N. Rosenberg, Effects of H202-generating systems on the Wolff-Chaikoff effect, Endocrinol 109: 2095 (1981).

    Google Scholar 

  32. B. Corvilain, J. Van Sande, J.E. Dumont, Inhibition by iodide of iodide binding to proteins: the Wolff-Chaikoff effect is caused by inhibition of H202 generation, Biochem.Biophys.Res.Commun. 154:1287 (1988).

    Google Scholar 

  33. R.P. Magnuson, A. Taurog, M.L. Dorris, Mechanism of iodide-dependent catalatic activity of thyroid peroxidase and lactoperoxidase, J.Biol.Chem. 259: 197 (1984).

    Google Scholar 

  34. S.H. Wollmann, F.E. Reed, Acute effect of organic binding of iodine and the iodide concentrating mechanism of the thyroid gland, Am.J.Physiol. 194: 28 (1958).

    Google Scholar 

  35. J. Wolff, I.L. Chaikoff, R.C. Goldberg, J.R. Meier, The temporary nature of the inhibitory action of excess iodide on organic iodine synthesis in the normal thyroid, Endocrinol. 45: 504 (1949).

    CAS  Google Scholar 

  36. L.W. Braverman, S.H. Ingbar, Changes in thyroidal function during adaptation to large doses of iodide, J.Clin.Invest. 42: 1216 (1963).

    CAS  Google Scholar 

  37. E.F. Grollman, A. Smolar, A. Ommaya, D. Tombaccini, P. Santisteban, Iodine suppression of iodide uptake in FRTL-5 thyroid cells, Endocrinol. 118: 2477 (1986).

    CAS  Google Scholar 

  38. J.R. Sherwin, W. Tong, The action of iodide and TSH on thyroid cells showing a dual control system for the iodide pump, Endocrinol. 94: 1465 (1974).

    CAS  Google Scholar 

  39. G.D. Chazenbalk, M.A. Pisarev, L. Kraviec, G.J. Juvenal, G. Burton, and R.M. Valsecchi, In vitro inhibitory effects of an iodinated derivative of arachidonic acid on calf thyroid, Acta.Physiol.Pharmacol. Latino Am. 34:367 (1984).

    Google Scholar 

  40. G.P. Becks, M.C. Eggo and G.N. Burrow, Regulation of differentiated thyroid function by iodide: preferential inhibitory effect of excess iodide on thyroid hormone secretion, Endocrinol. 120: 2569 (1987).

    CAS  Google Scholar 

  41. J. Van Sande, P. Cochaux, and J.E. Dumont, Further characterization of the iodide inhibitory effect on the cAMP system in dog thyroid slices, Mol.Cell Endocrinol. 40: 181 (1985).

    Google Scholar 

  42. S. Filletti, B. Rapoport, Evidence that organic iodine attenuates the cAMP response to TSH stimulation by an action at or near the adenylate cyclase catalytic unit, Endocrinol. 113: 1608 (1983).

    Google Scholar 

  43. J. Wolff, Physiological aspects of iodide excess in relation to radiation protection, J.Mol.Med. 4: 151 (1980).

    CAS  Google Scholar 

  44. N.E. Heldin, F.A. Karlsson, B. Westermark, A growth stimulatory effect of iodide, Endocrinol. 121: 757 (1987).

    CAS  Google Scholar 

  45. R. Gartner, W. Greil, R. Demharter, K. Horn, Involvement of cAMP, I- and metabolites of arachidonic acid in the regulation of cell proliferation of isolated porcine thyroid follicles, Mol.Cell.Endocrinol. 42: 145 (1985).

    CAS  Google Scholar 

  46. G.P. Becks, M.C. Eggo, G.N. Burrow, Organic Iodine inhibits DNA synthesis and growth in FRTL-5 thyroid cells, Endocrinol. 123: 545 (1988).

    CAS  Google Scholar 

  47. L.J. Valenta, Effect of iodide and TSH on in vitro 14C-amino acid incorporation into rat thyroid protein, Acta Endocrinol. 76: 273 (1974).

    CAS  Google Scholar 

  48. S. Filletti, B. Rapoport, Autoregulation by iodine of thyroid protein synthesis: influence of iodine on amino acid transport in cultured thyroid cells, Endocrinol. 114: 1379 (1984).

    Google Scholar 

  49. K. Hashizume, M. Kobayashi, T. Onaya, Iodide modulation of Ca2+ efflux from mouse thyroid, Endocrinol.Japon. 32: 259 (1985).

    Article  CAS  Google Scholar 

  50. N. Takasu, Y. Handa, A. Kawaoi, Y. Shimizu, T. Yamada, Effects of iodide on thyroid follicle structure and electrophysiological potentials in cultured thyroid cells, Endocrinol. 117: 71 (1985).

    CAS  Google Scholar 

  51. J. M. Boeynaems, N. Galand, J.E. Dumont, Inhibition by iodide of the cholinergic stimulation of prostaglandin synthesis in dog thyroid, Endocrinol. 105: 996 (1979).

    CAS  Google Scholar 

  52. J.M. Boeynaems, D. Pelster, J.A. Oates, W.C. Hubbard, Novel transformations of arachidonic acid by the rat thyroid in vitro, Biochim.Biophys.Acta 665: 623 (1981).

    Article  CAS  Google Scholar 

  53. A. Takeuchi, J. Mockel, Mechanism of increased phosphatidyl inositol turnover in dog thyroid slices in vitro, Ann.d’Endocrinol. 44: 54A (1983).

    Google Scholar 

  54. B. Rousset, J. Wolff, Lactoperoxidase-tubulin interactions, J.Biol.Chem. 255: 2514 (1980).

    CAS  Google Scholar 

  55. H. Jenzer, U. Burgi, H. Kohler, Irreversible inactivation of lactoperoxidase in the course of iodide oxidation, Biochem.Biophys.Res.Commun. 142: 552 (1987).

    Article  CAS  Google Scholar 

  56. L.J. Valenta, W.C. Florsheim, B.S. Sharma, Acute effects of iodide on the stimulated rat thyroid, Endocrinol. 111: 1721 (1982)

    CAS  Google Scholar 

  57. N.E. Heldin, F.A. Karlsson, B. Westermark, Inhibition of cAMP formation by iodide in suspension cultures of porcine thyroid follicle cells, Mol.Cell.Endocrinol. 41: 61 (1985).

    CAS  Google Scholar 

  58. J.R. Sherwin, D.J. Price, Autoregulation of thyroid iodide transport: evidence for the mediation of protein synthesis -iodide-induced suppression of iodide transport, Endocrinol. 119: 2553 (1986).

    CAS  Google Scholar 

  59. P. Santisteban, A.J. Hargreaves, J. Cano, J. Avila, L. Lamas, Effects of high doses of iodide on thyroid secretion: evidence for the presence of iodinated membrane tubulin, Endocrinol. 117: 607 (1985)

    CAS  Google Scholar 

  60. B. Bhattacharyya, J. Wolff, Membrane-bound tubulin in brain and thyroid tissue, J.Biol.Chem. 250: 7639 (1975).

    CAS  Google Scholar 

  61. N. Bagchi, T. Brown, B. Shivers, R.E. Mack, Effect of inorganic iodide on thyroglobulin hydrolysis in cultured cells, Endocrinol. 100: 1002 (1977).

    CAS  Google Scholar 

  62. C.S. Ahn, I.N. Rosenberg, Proteolytic activity in the rat thyroid gland, Endocrinol. 81: 1319 (1967).

    CAS  Google Scholar 

  63. R.L. Peake, K. Balasubramaniam, W.P. Deiss, Effect of reduced glutathione on the proteolysis of intraparticulate and native thyroglobulin, Biochim.Biophys.Acta 148: 689 (1967).

    Article  CAS  Google Scholar 

  64. W. Vanderlaan, R. Caplan, Observations of a relationship between total thyroid iodine content and the iodide-concentrating mechanism of the thyroid gland in the rat, Endocrinol. 54: 437 (1954).

    CAS  Google Scholar 

  65. N.S. Halmi, R.G. Stuelke, Problems of thyroidal self regulation, Metabolism 5: 646 (1956).

    CAS  Google Scholar 

  66. P. Cochaux, J. Van Sande, S. Swillens, J.E. Dumont, Iodide-induced inhibition of adenylate cyclase activity in horse and dog thyroid, Eur.J. Biochem. 170:435 (1987).

    Google Scholar 

  67. E.L. Socolow, D. Dunlap, R.A. Sobel, S.H. Ingbar, A correlative study of the effect of I- administration on thyroidal I- transport and organic iodine content, Endocrinol. 83: 737 (1968).

    CAS  Google Scholar 

  68. S. Lissitzky, J. Gregoire, J. Gregoire, N. Limozin, The presence and in vitro activity of free iodinated peptides in the thyroid gland of mammals and man, Gen.Comp.Endocrinol. 1: 519 (1961).

    CAS  Google Scholar 

  69. J.F. Haney, S. Lissitzky, A study of the dialysable iodo-compounds of rat thyroid gland, Gen.Comp.Endocrinol. 3: 139 (1963).

    Article  CAS  Google Scholar 

  70. D.J. Price, J.R. Sherwin, Autoregulation of iodide transport in the rodent: absence of autoregulation in fetal tissue and comparison of material and fetal iodination products, Endocrinol. 119: 2547 (1986).

    CAS  Google Scholar 

  71. P. Vilkki, An iodide complexing phospholipid, Arch.Biochem.Biophys. 97: 425 (1962).

    Article  CAS  Google Scholar 

  72. P.B. Schneider, J. Wolff, Thyroidal Iodide Transport VI. On a possible role for iodide-binding phospholipids, Biochim.Biophys.Acta 94: 114 (1965).

    Article  CAS  Google Scholar 

  73. G.L. Jendrasiak, Halide interaction with phospholipids -proton magnetic resonance studies, Chem.Phys.Lipids 9: 133 (1972).

    Article  CAS  Google Scholar 

  74. P. Vilkki, I. Jaakonmaki, Role of fatty acids in iodide-complexing lecithin, Endocrinol. 78: 453 (1966).

    CAS  Google Scholar 

  75. G.M. Levis, J.N. Karli, B. Malamos, The phospholipids of the thyroid gland, Clin.Chem.Acta 41: 335 (1971).

    Article  Google Scholar 

  76. G. Van Dessel, A. Lagrou, H.J. Hilderson, W. Dierick, G. Dacremont, Quantitative determination of the neutral glycosyl ceramides in bovine thyroid gland, Biochimie 59: 839 (1977).

    Google Scholar 

  77. M. Iwamori, K. Sawada, Y. Hara, M. Nishio, T. Fujisawa, H. Imura, Y. Nagai, Neutral glycosphingolipids and gangliosides of bovine thyroid, J.Biochem. (Tokyo) 91: 1875 (1982).

    CAS  Google Scholar 

  78. B. Bouchon, J. Portoukalian, H. Bornet, Major gangliosides in normal and pathological human thyroids, Biochem.Int. 10: 531 (1985).

    CAS  Google Scholar 

  79. G.A.F. Van Dessel, A.R. Lagrou, 1. Hilderson, W. Dierick, W. Lauwers, Structure of major gangliosides from bovine thyroid, J.Biol.Chem. 254: 9305 (1979).

    Google Scholar 

  80. J. Wolff, Iodide transport, anion selectivity and the iodide “trap”, in: “Diminished Thyroid Hormone Formation”, D. Reinwein, E. Klein, eds., F.K. Schattauer, Stuttgart 3 (1982).

    Google Scholar 

  81. E.M. Wright, J.M. Diamond, Anion selectivity in biological systems, Physiol.Rev. 57: 109 (1977).

    CAS  Google Scholar 

  82. D. Reichenberg, Ion exchange selectivity, in: “Ion Exchange -A Series of Advances”, Vol 1, J.A. Marinsky, ed., Marcel Dekker, NY 227 (1966).

    Google Scholar 

  83. I. Chatterjee, P. Nandy, B.B. Bhowmik, Nature of the interaction of phospholipid liposomes with iodine, Chem.Phys.Lipids 49: 57 (1988).

    Article  Google Scholar 

  84. G.L. Jendrasiak, NMR study of molecular interactions with phosphatidyl choline, Chem.Phys.Lipids 6: 215 (1971).

    Article  CAS  Google Scholar 

  85. H.C. Yohe, A. Rosenberg, Interaction of triiodide anion with gangliosides in aqueous iodine, Chem.Phys.Lipids 9: 279 (1972).

    Article  CAS  Google Scholar 

  86. G. Jendrasiak, R. Hayes, Spin-label study of the iodine-lecithin interaction, Nature 225: 278 (1970).

    CAS  Google Scholar 

  87. A. Finkelstein, A. Cass, Permeability and electrical properties of thin lipid membranes, J.Gen.Physiol. 52:Suppl 145 (1968).

    Google Scholar 

  88. B. Rosenberg, G. Jendrasiak, Semiconductive properties of lipids and their possible relationship to lipid bilayer conductivity, Chem.Phys.Lipids 2: 47 (1968).

    CAS  Google Scholar 

  89. G. Jendrasiak, M. Mangel, Ion-pair movement across bilayer lipid membranes, Nature 234: 89 (1971).

    CAS  Google Scholar 

  90. T.I. Shaw, The mechanism of iodide accumulation by the brown seaweed Lauminaria digitata, Proc.Roy.Soc.B. 150:336 (1959).

    Google Scholar 

  91. H. Klemperer, The accumulation of iodide by Fucus ceranoides, Biochem.J. 67:381 (1957).

    Google Scholar 

  92. J. Wolff, Thyroid Iodide Transport I. Cardiac Glycosides and the Role of Potassium, Biochim.Biophys.Acta 38: 316 (1960).

    Article  CAS  Google Scholar 

  93. A. Lagrou, W. Dierick, A. Christophe, G. Verdonk, Lipid composition of normal and hypertrophic bovine thyroids, Lipids 9: 870 (1974).

    Google Scholar 

  94. L.A. Lipshaw, P.P. Foa, The composition and possible physiologic role of the thyroid lipids, Adv.Lipid Res. 12: 227 (1974).

    CAS  Google Scholar 

  95. D.H. Shah, R.C. Shownkeen, V.R. Thakare, Iodinated thyrolipids, Acta Endocrinol. 70: 683 (1972).

    CAS  Google Scholar 

  96. J.L. Rabinowitz, M. Zanger, V. Podolski, Identification by NMR of iodinated lipids in the dog thyroid, Biochem.Biophys.Res.Commun. 68: 1161 (1976).

    Article  CAS  Google Scholar 

  97. L. Svennerholm, Gangliosides of human thyroid gland, BBA 835: 231 (1985).

    Article  PubMed  CAS  Google Scholar 

  98. G.M. Levis, D.A. Koutras, A. Vagenakis, G. Messaris, C. Miras, B. Malamos, Thyroidal iodinated compounds in nodular goiter, Clin.Chim.Acta 20: 127 (1968).

    Article  CAS  Google Scholar 

  99. F. Beguinot, L. Beguinot, D. Tramontano, C. Duilio, S. Formisano,M. Bifulco, F.S. Ambesi, S.M. Aloj, TSH regulation of membrane lipid fluidity in the FRTL-5 thyroid cell line, J.Biol.Chem. 262: 1575 (1987).

    Google Scholar 

  100. H. Depauw, M. De Wolf, G. Van Dessel, H. Hilderson, A. Lagrou, W. Dierick, Modification of TSH-stimulated adenylate cyclase activity of bovine thyroid by manipulation of membrane phospholipid, Biochim.Biophys.Acta 937: 359 (1988).

    Article  CAS  Google Scholar 

  101. T.W. Scott, V. Trikojus, Interactions of phospholipids with thyroglobulin and their influence on the enzyme hydrolysis of this protein, Biochem.Biophys.Acta 215: 477 (1970).

    CAS  Google Scholar 

  102. B. Haye, C. Jacquemin, Incorporation of [14C]arachidonic acid in pig thyroid lipids and prostaglandins, Biochim.Biophys.Acta 487: 231 (1977).

    Google Scholar 

  103. S.L. Neidleman, J. Geigert, Biohalogenation: principles, basic roles and applications, John Wiley and Sons, NY (1986).

    Google Scholar 

  104. A. Bennenson, M. Mersel, A. Pinson, M. Heller, Enzymatic radioiodination of phospholipids catalyzed by lactoperoxidase, Anal.Biochem. 101: 507 (1980).

    Google Scholar 

  105. T.D. Butters, R.C. Hughes, Surface labeling of human KB cells, Biochem.J. 150: 59 (1975).

    CAS  Google Scholar 

  106. M. Mersel, A. Bennenson, F. Doljanski, Lactoperoxidase-catalyzed iodination of surface membrane lipids, Biochem.Biophys.Res.Commun. 70: 1166 (1976).

    Article  CAS  Google Scholar 

  107. J.F. Poduslo, P.E. Brown, Topographical arrangement of membrane proteins in the intact myelin sheath, J.Biol.Chem. 250: 1099 (1975).

    CAS  Google Scholar 

  108. S.I. Schlager, Specific 125I-iodination of cell surface lipids: plasma membrane alterations induced during humoral immune attack, J. Immunol. 123:2108 (1979).

    Google Scholar 

  109. B. Rousset, C. Poncet, J.E. Dumont, R. Mornex, Intracellular and extracellular sites of iodination in dispersed hog thyroid cells, Biochem.J. 192: 801 (1980).

    CAS  Google Scholar 

  110. A. Taurog, W. Tong, I. Chaikoff, An unidentified iodine compound formed by incubation of cell-free preparations of tissue with 131I, J.Biol.Chem. 227: 759 (1957).

    CAS  Google Scholar 

  111. I. Posner, L. Ordonez, Lipid-iodine association in the rat thyroid gland, Biochim.Biophys.Acta 187: 588 (1969).

    Article  CAS  Google Scholar 

  112. D.H. Shah, V.R. Thakare, R.C. Shownkeen, D.N. Pahuja, M.Y. Mandlik, Iodinated thyrolipids: their possible role in hormonogenesis, Acta Endocrinol. 74: 461 (1973).

    CAS  Google Scholar 

  113. G.D. Chazenbalk, M.A. Pisarev, G.J. Juvenal, D.L. Kleiman de Pisarev, H. Mercuri, M. DeTomas, Biosynthesis and regulation of iodolipids in calf thyroid, Acta Endocrinol. 108: 72 (1985).

    CAS  Google Scholar 

  114. B.R. Mullin, T. Pacuszka, G. Lee, L.D. Kohn, R.O. Brady, P.H. Fishman, Thyroid gangliosides with high affinity for TSH, Science 199: 77 (1978).

    Google Scholar 

  115. G.A.F. Van Dessel, A. Lagrou, H. Hilderson, W. Dierick, W. Lauwers, Structure of the major gangliosides from bovine thyroid, J.Biol.Chem. 254: 9305 (1979).

    Google Scholar 

  116. J.L. Rabinowitz, C.J. Tavares, Iodinated phospholipids and the in vitro iodination of proteins of dog thyroid gland, Biochem.J. 168:155 (1972).

    Google Scholar 

  117. N. Sonntag, Halogenation, dehalogenation, and dehydrohalogenation, in: “Fatty Acids, Part 2”, K.S. Markley, ed., Interscience Publ., NY 1073 (1961).

    Google Scholar 

  118. B.C. Saunders, B.P. Stark, Studies on peroxidase action XII: transiodination and related processes, Tetrahedron 4: 169 (1958).

    CAS  Google Scholar 

  119. M.A. Johnson, R. Croteau, Biosynthesis of ascaridole: iodide peroxidase-catalyzed synthesis of a monoterpene endoperoxide in soluble extracts of chenopodium ambrosioides, Arch.Biochem.Biophys. 235:254 (1984).

    Google Scholar 

  120. J. Boeynaems, W. Hubbard, Transformation of arachidonic acid into an iodolactone by the rat thyroid, J.Biol.Chem. 255: 9001 (1980).

    CAS  Google Scholar 

  121. J. Boeynaems, D. Reagan, W. Hubbard, Lactoperoxidase-catalyzed iodination of arachidonic acid: formation of macrolides, Lipids 16: 246 (1981).

    Google Scholar 

  122. J. Boeynaems, J. Watson, J. Oates, W. Hubbard, Iodination of docosahexaenoic acid by lactoperoxidase and thyroid gland in vitro: formation of an iodolactone, Lipids 16: 323 (1987).

    Google Scholar 

  123. P. DeLaMare, Electrophilic Halogenation, Cambridge Univ Press, Cambridge 171 (1976).

    Google Scholar 

  124. J. Turk, W. Henderson, S. Klebanoff, W. Hubbard, Iodination of arachidonic acid mediated by eosinophil peroxidase, myeloperoxidase and lactoperoxidase, Biochim.Biophys.Acta 751: 189 (1983).

    Article  CAS  Google Scholar 

  125. B. Haye, S. Champion, C. Jacquemin, Control by TSH of phospholipase A2 activity: a limiting factor in the biosynthesis of prostaglandins in the thyroid, FEBS Lett. 30: 253 (1973).

    CAS  Google Scholar 

  126. B. Haye, S. Champion, C. Jacquemin, Existence of two pools of prostaglandins during stimulation of the thyroid by TSH, FEBS Lett. 41: 89 (1974).

    CAS  Google Scholar 

  127. Y. Igarashi, Y. Kondo, Acute effects of TSH on phosphatidyl inositol degradation and transient accumulation of diacyl glycerol in isolated thyroid follicles, Biochem.Biophys.Res.Commun. 97: 759 (1980).

    CAS  Google Scholar 

  128. Y. Igarashi, Y. Kondo, Characterization of partial glyceride specific lipases in pig thyroid plasma membranes, Biochem.Biophys.Res.Commun. 97: 766 (1980).

    Article  CAS  Google Scholar 

  129. G. Chazenbalk, M. Pisarev, L. Krawiec, G. Juvenal, G. Burton, R. Valsecchi, In vitro inhibitory effects of an iodinated derivative of arachidonic acid on calf thyroid, Acta Physiol. Pharmacol. Latino Am. 34:367 (1984).

    Google Scholar 

  130. M. Pisarev, G. Chazenbalk, L. Krawiec, C. Juvenal, R. Valsecchi, G. Burton, Effects of purified iodolipids on thyroid function in vitro, Proc. 9th Int’l Congress abstract 225 (1985).

    Google Scholar 

  131. L. Krawiec, G. Chazenbalk, S. Puntarulo, G. Burton, A. Boveris, R. Valsecchi, M. Pisarev, The inhibition of PB125I formation in calf thyroid caused by 14-iodo-15-hydroxy-5,8,11-eicosatrienoic acid is due to decreased H202 production, Horm.Metab.Res. 20: 86 (1988).

    CAS  Google Scholar 

  132. G. Chazenbalk, R. Valsecchi, L. Krawiec, G. Burton, G.J. Juvenal, E. Monteagudo, H. Chester, M. Pisarev, Thyroid autoregulation inhibitory effects of iodinated derivatives of arachidonic acid on iodine metabolism, Prostaglandins 36: 163 (1988).

    CAS  Google Scholar 

  133. M. Pisarev, G. Burton, P. Grawitz, G. Chazenbalk, G. Juvenal, D. Kleiman de Pisarev, L. Krawiec, R. Valsecchi, Post-receptor events in growth control, in: “Frontiers in Thyroidology”, G. Medeiros-Neto, E. Gaitan, eds., 125 (1986).

    Google Scholar 

  134. W.V. Moore, J. Wolff, Binding of prostaglandin E1 to beef thyroid membranes, J.Biol.Chem. 248: 5705 (1973).

    CAS  Google Scholar 

  135. E.J. Goetzl, The conversion of leukotriene C4 to isomers of leukotriene B4 by human eosinophil peroxidase, Biochem.Biophys.Res.Commun. 106: 270 (1982).

    Article  CAS  Google Scholar 

  136. W.R. Henderson, A. Jorg, S. Klebanoff, Eosinophil peroxidase-mediated inactivation of leukotrienes B4, C4 and D4, J. Immunol. 128:2609 (1982).

    Google Scholar 

  137. J-M. Paredes, S. Weiss, Human neutrophils transform prostaglandins by a myeloperoxidase dependent mechanism, J.Biol.Chem. 257: 2738 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolff, J. (1989). Excess Iodide Inhibits the Thyroid by Multiple Mechanisms. In: Ekholm, R., Kohn, L.D., Wollman, S.H. (eds) Control of the Thyroid Gland. Advances in Experimental Medicine and Biology, vol 261. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2058-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2058-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2060-0

  • Online ISBN: 978-1-4757-2058-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics