The Arachidonic Acid Signal System in the Thyroid: Regulation by Thyrotropin and Insulin/IGF-I

  • Kazuo Tahara
  • Motoyasu Saji
  • Salvatore M. Aloj
  • Leonard D. Kohn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 261)


Previous reports (1–11) have defined the importance of the Ca/phosphoinositide/arachidonic acid signal system to both the function and growth of FRTL-5 rat thyroid cells and to the action of both thyrotropin (TSH) and alpha-1 adrenergic agents in these cells. Thus evidence has been presented that norepinephrine and TSH could increase degradation of phosphatidylinositol 4,5-bisphosphate (PIP2) (1) with the concomitant formation of diacyiglycerol and IP3 (2). This action was accompanied by increases in cytosolic Ca++ (3), arachidonic acid release from the cells (4, 5) and the action of arachidonic acid metabolites in processes important to thyroid hormone formation and growth (4–11).


Arachidonic Acid Pertussis Toxin Thyroid Cell Arachidonic Acid Metabolite Arachidonic Acid Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. Philp and E. F. Grollman, Thyrotropin and norepinephrine stimulate the metabolism of phosphoinositides in FRTL-5 thyroid cells, FEBS Letters, 202: 193 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    E. A. Bone, D. W. Alling and E. F. Grollman, Norepinephrine and thyroid-stimulating hormone induce inositol phosphate accumulation in FRTL-5 cells, Endocrinology, 119: 2193 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    S. J. Weiss, N. J. Philp and E. F. Grollman, Effect of thyrotropin on iodide efflux in FRTL-5 cells is mediated by Cat+, Endocrinology, 114: 1108 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Corda, C. Marcocci, L. D. Kohn, J. Axelrod, and A. Luini, Association of the changes in cytosolic Cat+ and iodide efflux induced by thyrotropin and by the stimulation of alpha 1 adrenergic receptors in cultured rat thyroid cells, J. Biol. Chem., 260: 9230 (1985).PubMedGoogle Scholar
  5. 5.
    C. Marcocci, A. Luini, P. Santisteban and E. F. Grollman, Norepinephrine and thyrotropin stimulation of iodide efflux in FRTL-5 thyroid cells involves metabolites of arachidonic acid and is associated with the iodination of thyroglobulin, Endocrinology 120: 1127 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    R. M. Burch, A. Luini, D. E. Mais, D. Corda, J. Y. Vanderhoek, L. D. Kohn and J. Axelrod, Alpha-1 adrenergic stimulation of arachidonic acid release and metabolism in a rat thyroid cell line, J. Biol. Chem., 261: 11236 (1986).PubMedGoogle Scholar
  7. 7.
    D. Corda and L. D. Kohn, Role of pertussis toxin sensitive G proteins in the alpha-1 adrenergic receptor mediated activation of membrane phospholipases and iodide fluxes in FRTL-5 thyroid cells, Biochem. Biophys. Res. Commun., 141: 1000 (1986).CrossRefGoogle Scholar
  8. 8.
    D. Corda and L. D. Kohn, Phorbol myristate acetate inhibits alpha-1 adrenergically but not thyrotropin regulated functions in FRTL-5 rat thyroid cells, Endocrinology, 120: 1152 (1986).CrossRefGoogle Scholar
  9. 9.
    P. Santisteban, M. DeLuca, D. Corda, E.F. Grollman and L. D. Kohn, Regulation of thyroglobulin iodination and thyroid hormone formation in FRTL-5 thyroid cells, in: “Fronteirs in Thyroidology, v. 2,” G. Medeiros-Neto and E. Gaitan, Plenum Press, New York (1986).Google Scholar
  10. 10.
    L. D. Kohn, E. A. Bone, J. Y. Chan, D. Corda, O. Isozaki, A. Luini, C.Marcocci, P. Santisteban and E. F. Grollman, Interactions of peptinergic hormone and biogenic amine signals in the regulation of thyroid function and growth, in: “Tansduction of Neuronal Signals,” P. J. Magistretti, J. H. Morrison and T.D. Reisine, eds., Foundation for the study of the Nervous system, Geneva (1986).Google Scholar
  11. 11.
    J. Axelrod, Transducing mechanism in pituitary, thyroid and visual system, in: “Tansduction of Neuronal Signals,” P. J. Magistretti, J. H. Morrison and T.D. Reisine, eds., Foundation for the study of the Nervous system, Geneva (1986).Google Scholar
  12. 12.
    E. Yavin, Z. Yavin, M. D. Schneider and L. D. Kohn, Monoclonal antibodies to the thyrotropin receptor: implications for receptor structure and the action of autoantibodies in Graves’ disease, Proc. Natl. Acad. Sci. USA, 78: 3180 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    W. A. Valente, P. Vitti, E. Yavin, C. M. Rotella, E. F. Grollman, R. Toccafondi and L. D. Kohn, Monoclonal antibodies derived from the lymphocytes of patients with Graves’ disease, Proc. Natl. Acad. Sci. USA, 79: 6680 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    L. D. Kohn, E. Yavin, Z. Yavin, P. Laccetti, P. Vitti, E. F. Grollman and W. A. Valente, Autoimmune thyroid disease studied with monoclonal antibodies to the TSH receptor, in: “Monoclonal Antibodies: Probes for the Study of Autoimmunity and Immunodeficiency,” B. F. Haynes and G. S. Eisenbarth, eds., Academic Press, New York (1983).Google Scholar
  15. 15.
    L. D. Kohn, D. Tombaccini, M. De Luca, M. Bifulco, E. F. Grollman and W. A. Valente, Monoclonal antibodies and the thyrotropin receptor, in: “Monoclonal Antibodies to Receptors: Probes for Receptor Structure and Function,” M. F. Greaves, ed., Receptors and Recognition, Series B, 17: 201 (1984).Google Scholar
  16. 16.
    L. D. Kohn, F. V. Alvarez, C. Marcocci, A. D. Kohn, A. Chen, W. E. Hoffman, D. Tombaccini, W. A. Valente, M. De Luca, P. Santisteban and E. F. Grollman, Monoclonal antibody studies defining the origin and properties of Graves’ autoantibodies, Ann. N. Y. Acad. Sci., 475: 157 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Y. Chan, M. De Luca, P. Santisteban, O. Isozaki, S. Shifrin, S. M. Aloj, E. F. Grollman and L. D. Kohn, Nature of thyroid autoantigens: the TSH receptor, in: Thyroid Autoimmunity,“ A. Pinchera, S. H. Ingbar and J. M. McKenzie, eds., Plenum Press, New York (1987).Google Scholar
  18. 18.
    L. D. Kohn, W. A. Valente, E. F. Grollman, S. M. Aloj and P. Vitti, Clinical determination and/or quantification of thyrotropin and a variety of thyroid stimulatory or inhibitory factors performed in vitro with an improved thyroid cell line FRTL-5, U. S. Patent 4,609,622, Sep. 2 (1986).Google Scholar
  19. 19.
    W. A. Valente, P. Vitti, C. M. Rotella, M. M. Vaughan, S. M. Aloj, E. F. Grollman, F. S. AmbesiImpiombato and L. D. Kohn, Antibodies that promote thyroid growth: a distinct population of thyroid stimulating autoantibodies, N. Engl. J. Med., 309: 1028 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    F. S. Ambesi-Impiombato, L. A. M. Parks and H. G. Coon, Culture of Hormone dependent epithelial cells from rat thyroids, Proc. Natl. Acad. Sci. USA, 77: 3455 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    F. S. Ambesi-Impiombato, Living, fast growing thyroid cell strain, FRTL-5, U. S. Patent 4,608,341, August 26 (1986).Google Scholar
  22. 22.
    L. D. Kohn, M. Saji, T. Akamizu, S. Ikuyama, O. Isozaki, A. D. Kohn, P. Santisteban, J. Y. Chan, S. Bellur, C. M. Rotella, F. V. Alvarez and S. M. Aloj, Receptors of the thyroid: the thyrotropin receptor is only the first violinist of a symphony orchestra, in: “The Thyroid: Regulation of its Normal Growth and Function,” R. Ekholm, L. D. Kohn and S. Wollman, eds., Plenum Press, New York (1989).Google Scholar
  23. 23.
    M. L. Casey, K. Korte and P. C. MacDonald, Epidermal growth factor stimulation of prostaglandin E 2 biosynthesis in amnion cells: induction of prostaglandin H 2 synthase, J. Biol. Chem., 263: 7846 (1988).PubMedGoogle Scholar
  24. 24.
    J. P. Merlie, D. Fagan, J. Mudd and P. Needleman, Isolation and characterization of the complimentary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase), J. Biol. Chem., 263: 3550 (1988).PubMedGoogle Scholar
  25. 25.
    D. H. Nugteren and E. Hazelhof, Isolation and properties of intermediates in prostaglandin biosynthesis, Biochimica et Biophysica Acta, 326: 448 (1973).PubMedCrossRefGoogle Scholar
  26. 26.
    J. G. Heider and R. L. Boyett, The picomole determination of free and total cholesterol in cells in culture, J. Lipid Res., 19: 514 (1978).PubMedGoogle Scholar
  27. 27.
    M. A. Kaluzny, L. A. Duncan, M. V. Merrit and D. E. Epps, Rapid separation of lipid classes in high yield and purity using bonded phase columns, J. Lipid Res., 26: 135 (1985).PubMedGoogle Scholar
  28. 28.
    J. M. Chirgwin, A. E. Przybyla, R. J. MacDonald and W. J. Utter, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18: 5294 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    H. Aviv and P. Leder, Purification of biologically active globin messenger RNA by chromatography on oligo thymidilic acid-cellulose, Proc. Natl. Acad. Sci. USA, 69: 1408 (1972).PubMedCrossRefGoogle Scholar
  30. 30.
    P. S. Thomas, Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose, Proc. Natl. Acad. Sci. USA, 77: 5201 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    A. P. Feinberg and B. Vogelstein, A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity, Anal. Biochem., 137: 266 (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Kazuo Tahara
    • 1
    • 2
  • Motoyasu Saji
    • 1
    • 2
  • Salvatore M. Aloj
    • 1
    • 2
  • Leonard D. Kohn
    • 1
    • 2
  1. 1.Section on Cell RegulationLaboratory of BiochemistryBethesdaUSA
  2. 2.Metabolism National Institute of Diabetes, Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations