Advertisement

ADP Ribosylation and G Protein Regulation in the Thyroid

  • James B. Field
  • Fernando Ribeiro-Neto
  • Madoka Taguchi
  • William Deery
  • C. S. Sheela Rani
  • Daniela Pasquali
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 261)

Abstract

Although most of the metabolic effects of TSH on the thyroid reflect its activation of the adenylate cyclase-cAMP system (1), other signalling systems mediate the effect of other agonists such as acetylcholine (2) and phorbol esters (3). Furthermore effects of TSH on desensitization (4) and 32P incorportation into phospholipids (1) are not mediated by cAMP. The phosphatidylinositol 4,5-bisphosphate cascade which increases intracellular Ca2+ and activates protein kinase C is present in the thyroid and may be important for the regulation of several metabolic effects (5–9). ADP ribosylation of various proteins is another possible signalling system for cell regulation (10–13). Although this process may involve either poly ADP ribosylation or mono ADP ribosylation, the present discussion will be limited to the latter process.

Keywords

Cholera Toxin Pertussis Toxin Thyroid Cell Bovine Thyroid Arginine Methyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Field, “Mechanism of action of TSH, in the Thyroid,” Harper and Row, New York, (1978).Google Scholar
  2. 2.
    C. DeCoster, J. Mockel, J. Van Sande, J. Unger and J. E. Dumont, The role of calcium and guanosine 3’:5’-monophosphate in the action of acetylcholine on thyroid metabolism, Eur. J. Biochem. 104: 199 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    Y. Yoshimura, A. Dekker, M. Ferdows, C.S.S. Rani, and J. B. Field, Effects of phorbol esters on metabolic variables in the thyroid, Endocrinology 119: 2018 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Hirau, R. P. Magnusson and B. Rapoport, Studies on the mechanism of desensitization of the cyclic AMP response to TSH stimulation in a cloned rat thyroid cell line, Mol. Cell. Endocrinol. 42: 21 (1985).CrossRefGoogle Scholar
  5. 5.
    E. A. Bone, D. W. Alling, and E. F. Grollman, Norepinephrine and thyroid-stimulating hormone induce inositol phosphate accumulation in FRTL-5 cells, Endocrinology 119: 2193 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    J. B. Field, P. A. Ealey, N. J. Marshall, and S. Cockcroft, Thyroid stimulating hormone stimulates increases in inositol phosphates as well as cyclic AMP in the FRTL-5 rat thyroid cell line, Biochem. J. 247: 519 (1987).Google Scholar
  7. 7.
    E. Laurant, J. Mockel, J. Van Sande, I. Graff and J. E. Dumont, Dual activation by thyrotropin of the phospholipase C and cyclic AMP cascades in human thyroid, Mol. Cell. Endocrinol. 52: 273 (1987).CrossRefGoogle Scholar
  8. 8.
    M. Taguchi, and J. B. Field, Effects of thyroid-stimulating hormone, carbachol, norepinephrine, and adenosine 3’,5’-monophosphate on polyphosphatidylinositol phosphate hydrolysis in dog thyroid slices, Endocrinology 123: 2019 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    I. Graff, J. Mockel, E. Laurent, C. Erneux, and J. E. Dumont, Carbachol and sodium fluoride, but not TSH stimulate the generation of inositol phosphates in the dog thyroid, FEBS Lett. 210: 204, (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Vitti, M. J. S. DeWolf, A. M. Acquaviva, M. Epstein, and L. D. Kohn, Thyrotropin stimulation of the ADP ribosyltransferase activity of bovine thyroid membranes, Proc. Nat. Acad. Sci. USA 79: 1525, (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Filetti, and B. Rapoport, Hormonal stimulation of eucaryotic cell ADP-ribosylation. Effect of thyrotropin on thyroid cells, J. Clin. Invest. 68: 461, (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Filetti, N. A. Takai, and B. Rapoport, Prevention by nicotinamide of desensitization to thyrotropin stimulation in cultured human thyroid cells, J. Biol.Chem. 256: 1072, (1981).PubMedGoogle Scholar
  13. 13.
    M. J. S. DeWolf, P. Vitti, F. S. Ambesi-Impiombaba, and L. D. Kohn, Thyroid membrane ADP ribosyltransferase activity. J. Biol. Chem. 256: 12287, (1981).Google Scholar
  14. 14.
    R. V. Rebois, S. K. Beckner, R. 0. Brady, and P. H. Fishman, Mechanism of action of glycopeptide hormones and cholera toxin: What is the role of ADP ribosylation? Proc. Natl. Acad. Sci. 80: 1275, (1983).CrossRefGoogle Scholar
  15. 15.
    F. Ribeiro-Neto, L. Birnbaumer, and J. B. Field, Incubation of bovine thyroid slices with thyrotropin is associated with a decrease in the ability of pertussis toxin to adenosine diphosphate-ribosylate guanine nucleotide regulatory component(s), Mol. Endocrinol. 1: 482, (1987).Google Scholar
  16. 16.
    F. Ribeiro-Neto, R. Mattera, D. Grenet, R. D. Sekura, L. Birnbaumer, and J. B. Field, Adenosine diphosphate ribosylation of G proteins by pertussis and cholerat toxin in isolated membranes. Different requirements for and effects of guanine nucleotides and Mgt+, Mol. Endocrinol. 1: 472, (1981).Google Scholar
  17. 17.
    D. Corda, R. D. Sekura, and L. D. Kohn, Thyrotropin effect on the availability of Ni regulatory protein in FRTL-5 rat thyroid cells to ADP-ribosylation by pertussis toxin, Eur. J. Biochem. 166: 475, (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    S. J. Shuman, U. Zor, R. Chayoth, and J. B. Field, Exposure of thyroid slices to thyroid-stimulating hormone induces refractoriness of the cyclic AMP system to subsequent hormone stimulation, J. Clin. Invest. 57: 1132, (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    K. Mashiter, G. D. Mashiter, R. L. Hauger, J. B. Field, Effects of cholera and E. coli enterotoxins on cyclic adenosine 3’,5’-monophosphate levels and intermediary metabolism in the thyroid, Endocrinology 92: 541, (1973).PubMedCrossRefGoogle Scholar
  20. 20.
    B. Rapoport, S. Filetti, N. Takai, and P. Seto, Studies on the desensitization of the cyclic AMP response to thyrotropin in thyroid tissue, FEBS Lett. 146: 23, (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    Y. Totsuka, T. B. Nielsen, and J. B. Field, Effect of thyrotropin-induced desensitizsation of bovine thyroid adenylate cyclase on the nucleotide regulatory protein, Endocrinology 113: 1088, (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    P. Cochaux, J. Van Sande, and J. E. Dumont, Islet-activating protein discriminates between different inhibitors of thyroidal cyclic AMP system, FEBS Lett. 179: 303, (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    K. Haraguchi, C. S. S. Rani, and J. B. Field, Effects of thyrotropin, carbachol, and protein kinase-C stimulators on glucose transport and glucose oxidation by primary cultures of dog thyroid cells, Endocrinology 123: 1288, (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    I. Pastan, B. Herring, P. Johnson, and J. B. Field, In vitro stimulation of glucose oxidation in thyroid by acetylcholine, J. Biol. Chem. 236:340, (1961).Google Scholar
  25. 25.
    M. Altman, H. Oka, and J. B. Field, Effect of TSH acetylcholine, epinephrine, serotonin and synkavite on s2P incorporation into phospholipids in dog thyroid slices, Biochim. Biophys. Acta. 116: 586, (1966).CrossRefGoogle Scholar
  26. 26.
    S. C. S. Rani, A. E. Boyd III, and J. B. Field, Effects of acetylcholine, TSH and other stimulators on intracellular calcium concentration in dog thyroid cells, Biochem. Biophys. Res. Commun. 131: 1041, (1985).CrossRefGoogle Scholar
  27. 27.
    D. Corda, C. Marcocci, L. D. Kohn, J. Axelrod and A. Luini, Association of the changes in cytosolic Cae+ and iodide efflux induced by thyrotropin and by the stimulation of 1-adrenergic receptors in cultured rat thyroid cells, J. Biol. Chem. 260: 9230, (1985).PubMedGoogle Scholar
  28. 28.
    D. Corda, and L. D. Kohn, Role of pertussis toxin sensitive G proteins in the alpha]. adrenergic receptor but not in the thyrotropin receptor mediated activation of membrane phospholipases and iodide fluxes in FRTL-5 thyroid cells, Biochem. and Biphys. Res. Commun. 141: 1000, (1986).Google Scholar
  29. 29.
    R. M. Burch, A. Luini, and J. Axelrod, Phospholipase A2 and phosphalipase C are activated by distinct GTP-binding proteins in response to 1 adrenergic stimulation in FRTL-5 thyroid cells, Proc. Nat. Acad. Sci. USA 83: 7201, (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Cockroft, and J. Stutchfield, G-proteins, the inositol lipid signalling pathway, and secretion, Phil. Trans. R. Soc. Lond. 320: 247, (1988).CrossRefGoogle Scholar
  31. 31.
    S. Schnefel, H. Banfic, L. Eckhardt, G. Schultz, and I. Schultz, Acetylcholine and cholecystokinin receptors functionally couple by different G-proteins to phospholipase C in pancreatic acinar cells, FEBS Lett. 230: 125, (1988).PubMedCrossRefGoogle Scholar
  32. 32.
    F. Okajima, K. Sho, and Y. Kondo, Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositde turnover in FRTL-5 cells, Endocrinology 123: 1035, (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Ikeda, W. J. Deery, T. B. Nielsen, M. S. Ferdows, and J. B. Field, Dephosphylation of 21 K and 19 K polypeptides in response to thyroid stimulating hormone in cultured thyroid cells. Endocrinology 119: 591, (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Ikeda, W. J. Deery, M. S. Ferdows, T. B. Nielsen, and J. B. Field, Role of cellular Ca2+ in phosphorylation of 21 K and 19 K polypeptides in cultured thyroid cells - effects of phorbol esters, trifluorperazine and TMB-8, Endocrinology 121: 175, (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • James B. Field
    • 1
  • Fernando Ribeiro-Neto
    • 1
  • Madoka Taguchi
    • 1
  • William Deery
    • 1
  • C. S. Sheela Rani
    • 1
  • Daniela Pasquali
    • 1
  1. 1.Diabetes Research Laboratory St. Lukes Episcopal Hospital Department of MedicineBaylor College of MedicineHoustonUSA

Personalised recommendations