Immunocytochemistry and Synaptic Relationships of Physiologically Characterized HRP-Filled Neurons

  • Peter Somogyi
  • Tamás F. Freund


The combination of intracellular recording and marking of neurons with horseradish peroxidase (HRP) has greatly extended the understanding of neuronal circuits. As discussed in Chapter 7 by Kitai et al., this approach is suitable for the reconstruction of the axonal and dendritic arborizations of neurons over several millimeters, thus providing a more complete picture of individual cells than was possible with previous methods. In addition, the direct correlation of electrophysiological and structural data becomes possible. In most cases the interpretation of the possible role of identified neurons would benefit greatly from a knowledge of their biochemical characteristics, especially their transmitters. The identification of the transmitters of the postsynaptic cells would also be useful because each neuron or afferent system is likely to contact several neurochemically, morphologically, and/or physiologically distinct neuron populations.


Visual Cortex Pyramidal Cell Dendritic Spine Colloidal Gold Lateral Geniculate Nucleus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. C., 1977, Technical considerations on the use of horseradish peroxidase as a neuronal marker, Neuroscience 2:141–145.PubMedCrossRefGoogle Scholar
  2. Adams, J. C., 1981, Heavy metal intensification of DAB-based HRP reaction product, J. Histo-chem. Cytoehem. 29:775.CrossRefGoogle Scholar
  3. Aghajanian, G. K., and Vandermaelen, C. P., 1982, Intracellular identification of central noradrenergic and serotonergic neurons by a new double labeling procedure, J. Neurosci. 2:1786–1792.PubMedGoogle Scholar
  4. Balcom, G. J., Lenox, R. H., and Meyerhoff, J. L., 1975, Regional y-aminobutyric acid levels in rat brain determined after microwave fixation, J. Neurochem. 24:609–613.PubMedGoogle Scholar
  5. Bendayan, M., and Zollinger, M., 1983, Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique, J. Histochem. Cytochem. 31:101–109.PubMedCrossRefGoogle Scholar
  6. Bendayan, M., Nanci, A., Herbener, G. H., Grégoire, S., and Duhr, M. A., 1986, A review of the study of protein secretion applying the protein A-gold immunocytochemical approach, Am.J.Anat. 175:379–400.PubMedCrossRefGoogle Scholar
  7. Bornstein, J. C., Costa, M., and Furness, J. B., 1986, Synaptic inputs to immunohistochemically identified neurones in the submucous plexus of the guinea-pig small intestine, J. Physiol. (Lond.) 381:465–482.Google Scholar
  8. Brown, A. G., and Fyffe, R. E. W., 1984, Intracellular Staining of Mammalian Neurones, Academic Press, London.Google Scholar
  9. Bullier, J., and Henry, G. H., 1979, Laminar distribution of first-order neurons and afferent terminals in cat striate cortex, J. Neurophysiol. 42:1271–1281.PubMedGoogle Scholar
  10. Capowski, J. J., and Rethelyi, M., 1982, Neuron reconstruction using a quantimet image analysing computer system, Acta Morphol. Acad. Sci. Hung. 30:241–249.PubMedGoogle Scholar
  11. Cohen, R. S., Chung, S. K., and Pfaff, D. W., 1985, Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe, Cell. Mol. Neurobiol. 5:271–284.PubMedCrossRefGoogle Scholar
  12. Creutzfeldt, O., Maekawa, K., and Hosli, L., 1969, Forms of spontaneous and evoked postsynaptic potentials of cortical nerve cells, Prog. Brain Res. 31:265–273.PubMedCrossRefGoogle Scholar
  13. Freund, T. F., Martin, K. A. C., Smith, A. D., and Somogyi, P., 1983, Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat’s visual cortex, J. Comp. Neurol. 221:263–278.PubMedCrossRefGoogle Scholar
  14. Freund, T. F., Martin, K. A. C., Somogyi, P., and Whitteridge, D., 1985, Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic affrents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation, J. Comp. Neurol. 242:275–291.PubMedCrossRefGoogle Scholar
  15. Friedlander, M. J., Lin, C.-S., Stanford, L. R., and Sherman, S. M., 1981, Morphology of functionally identified neurons in lateral geniculate nucleus of the cat, J. Neurophysiol. 46:80–129.PubMedGoogle Scholar
  16. Garey, L. J., and Powell, T. P. S., 1971, An experimental study of the termination of the lateral geniculo-cortical pathway in the cat and monkey, Proc. R. Soc. Lond. [Biol.] 179:41–63.CrossRefGoogle Scholar
  17. Graber, M. B., and Kreutzberg, G. W., 1985, Immuno gold staining (IGS) for electron microscopical demonstration of glial fibrillary acidic (GFA) protein in LR white embedded tissue, Histochemistry 83:497–500.PubMedCrossRefGoogle Scholar
  18. Grace, A. A., and Bunney, B. S., 1983, Intracellular and extracellular electrophysiology of nigral dopaminergic neurones—1. Identification and characterization, Neuroscience 10:301–315.PubMedCrossRefGoogle Scholar
  19. Graham, R. C., and Karnovsky, M. J., 1966, The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique, J. Histochem. Cytochem. 14:291–302.PubMedCrossRefGoogle Scholar
  20. Hanker, J. S., Yates, P. E., Metz, C. B., and Rustioni, A., 1977, A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase, Histochem. J. 9:789–792.PubMedCrossRefGoogle Scholar
  21. Hearn, S. A., Silver, M. M., and Sholdice, J. A., 1985, Immunoelectron microscopic labeling of immunoglobulin in plasma cells after osmium fixation and epoxy embedding, J. Histochem. Cytochem. 33:1212–1218.PubMedCrossRefGoogle Scholar
  22. Hendry, S. H. C., Houser, C. R., Jones, E. G., and Vaughn, J. E., 1983, Synaptic organization of immunocytochemically identified GABA neurones in the monkey sensory—motor cortex, J. Neurocytol. 12:639–660.PubMedCrossRefGoogle Scholar
  23. Hodgson, A. J., Penke, B., Erdei, A., Chubb, I. W., and Somogyi, P., 1985, Antiserum to γ-aminobutyric acid. I. Production and characterisation using a new model system, J. Histochem. Cytochem. 33:229–239.PubMedCrossRefGoogle Scholar
  24. Hollander, H., 1970, The section embedding (SE) technique. A new method for the combined light microscopic and electron microscopic examination of central nervous tissue, Brain Res. 20:39–47.PubMedCrossRefGoogle Scholar
  25. Jones, E. G., 1975, Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey, J. Comp. Neurol. 160:205–268.PubMedCrossRefGoogle Scholar
  26. Kisvarday, Z. F., Martin, K. A. C., Whitteridge, D., and Somogyi, P., 1985, Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat, J. Comp. Neurol. 241:111–137.PubMedCrossRefGoogle Scholar
  27. Kisvarday, Z. F., Martin, K. A. C., Freund, T. F., Magloczky, Z., Whitteridge, D., and Somogyi, P., 1986, Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex, Exp. Brain Res. 64:541–552.PubMedCrossRefGoogle Scholar
  28. Kisvarday, Z. F., Martin, K. A. C., Friedlander, M. J., and Somogyi, P., 1981, Evidence for interlaminar inhibitory circuits in striate cortex of cat, J. Comp. Neurol. 260:1–19.CrossRefGoogle Scholar
  29. Kitai, S. T., and Bishop, G. A., 1981, Horseradish peroxidase: Intracellular staining of neurons, in : Neuroanatomical Tract-Tracing Methods, (L. Heimer and M. J. RoBards, eds.), Plenum Press, New York, pp. 262–277.Google Scholar
  30. Koch, C., and Poggio, T., 1983, A theoretical analysis of electrical properties of spines, Proc. R. Soc. Lond. [Biol.] 218:455–477.CrossRefGoogle Scholar
  31. Lane, B. P., and Europa, D. L., 1965, Differential staining of ultrathin sections of Epon-embed- ded tissues for light microscopy, J. Histochem. Cytochem. 13:579–582.PubMedCrossRefGoogle Scholar
  32. LeVay, S., and Gilbert, C. D., 1976, Laminar patterns of geniculocortical projection in the cat, Brain Res. 113:1–19.PubMedCrossRefGoogle Scholar
  33. Marin-Padilla, M., 1969, Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: A Golgi study, Brain Res. 14:633–646.PubMedCrossRefGoogle Scholar
  34. Marin-Padilla, M., and Stibitz, G. R., 1974, Three-dimensional reconstruction of the basket cell of the human motor cortex, Brain Res. 70:511–514.PubMedCrossRefGoogle Scholar
  35. Martin, K. A. C., and Whitteridge, D., 1984, Form, function, and intracortical projections of spiny neurones in the striate visual cortex of the cat, J. Physiol. (Lond.) 353:463–504.Google Scholar
  36. Martin, K. A. C., Somogyi, P., and Whitteridge, D., 1983, Physiological and morphological properties of identified basket cells in the cat’s visual cortex, Exp. Brain Res. 50:193–200PubMedCrossRefGoogle Scholar
  37. Ottersen, O. P., and Storm-Mathisen, J., 1984, Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique, J. Comp. Neurol 229:374–392.PubMedCrossRefGoogle Scholar
  38. Phillips, C. G. 1959, Actions of antidromic pyramidal volleys on single Betz cells in the cat, Q. J. Exp. Physiol. 44:1–25.Google Scholar
  39. Ramon y Cajal, S., 1911, Histologie du Systeme Nerveux de l’Homme et des Vertebres, Vol. II, Maloine, Paris.Google Scholar
  40. Reaves, T. A., Cumming, R., Libber, M. T., and Hayward, J. N., 1983, Immunocytochemical identification of intracellularly dye-marked neurons: A double-labelling technique for light and electron microscopic analysis, in: Techniques in Immunocytochemistry, Vol. 2 (G. R. Bullock, and P. Petrusz, eds.), Academic Press, London, pp. 71–84.Google Scholar
  41. Ribak, C. E., 1978, Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase, J. Neurocytol. 7:461–478.PubMedCrossRefGoogle Scholar
  42. Rosenquist, A. C., Edwards, S. B., and Palmer, L. A., 1974, An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat, Brain Res. 80:71–93.PubMedCrossRefGoogle Scholar
  43. Roth, J., Bendayan, M., Carlemalm, E., Villiger, W., and Garavito, M., 1981, Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue, J. Histochem. Cytochem. 29:663–671.PubMedCrossRefGoogle Scholar
  44. Seguela, P., Geffard, M., Buijs, R. M., and Le Moal, M., 1984, Antibodies against y-aminobu-tyric acid: Specificity studies and immunocytochemical results, Proc. Natl. Acad. Sci. U. S. A. 81:3888–3892.PubMedCrossRefGoogle Scholar
  45. Somogyi, P., and Hodgson, A. J., 1985, Antiserum to y-aminobutyric acid. III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex. J. Histochem. Cytochem. 33:249–257.PubMedCrossRefGoogle Scholar
  46. Somogyi, P., and Soltesz, I., 1986, Immunogold demonstration of GABA in synaptic terminals of intracellularly recorded, horseradish peroxidase-filled basket cells and clutch cells in the cat’s visual cortex, Neuroscience 19:1051–1065.PubMedCrossRefGoogle Scholar
  47. Somogyi, P., Hodgson, A. J., and Smith, A. D., 1979, An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi-staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material, Neuroscience 4:1805–1852.PubMedCrossRefGoogle Scholar
  48. Somogyi, P., Kisvarday, Z. F., Martin, K. A. C., and Whitteridge, D., 1983, Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat, Neuroscience 10:261–294.PubMedCrossRefGoogle Scholar
  49. Somogyi, P., Hodgson, A. J., Smith, A. D., Nunzi, M. G., Gorio, A., and Wu, J.-Y., 1984, Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material, J. Neurosci. 4:2590–2603.PubMedGoogle Scholar
  50. Somogyi, P., Hodgson, A. J., Chubb, I. W., Penke, B., and Erdei, A., 1985, Antiserum to y-aminobutyric acid. II. Immunocytochemical application to the central nervous system, J. Histochem. Cytochem. 33:240–248.PubMedCrossRefGoogle Scholar
  51. Somogyi, P., Halasy, K., Somogyi, J., Storm-Mathisen, J., and Ottersen, O. P., 1986, Quantification of immunogold labeling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum, Neuroscience 19:1045–1050.PubMedCrossRefGoogle Scholar
  52. Stefanis, C., and Jasper, H. H., 1964, Recurrent collateral inhibition in pyramidal tract neurons, J. Neurophysiol 27:855–877.PubMedGoogle Scholar
  53. Sternberger, L. A., Hardy, P. H., Jr., Cuculis, J. J., and Meyer, H. G., 1970, The unlabelled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen—antibody complex (horseradish peroxidase—antihorseradish peroxidase) and its use in identification of spirochetes, J. Histochem. Cytochem. 18:315–333.PubMedCrossRefGoogle Scholar
  54. Storm-Mathisen, J., Leknes, A. K., Bore, A. T., Vaaland, J. L., Edminson, P., Haug, F.-M. S., and Ottersen, O. P., 1983, First visualization of glutamate and GABA in neurones by immunocytochemistry, Nature 301:517–520.PubMedCrossRefGoogle Scholar
  55. Szentagothai, J., 1973, Synaptology of the visual cortex, in: Handbook of Sensory Physiology (R. Jung, H. Autrum, W. R. Loewenstein, D. M. McKay, and H. L. Tenber, eds.), Springer-Verlag, Berlin, pp. 270–321.Google Scholar
  56. Szentagothai, J., 1983, The modular architectonic principle of neural centers, Rev. Physiol. Biochem. Pharmacol. 98:11–61.PubMedCrossRefGoogle Scholar
  57. Theodosis, D. T., Chapman, D. B., Montagnese, C., Poulain, D. A., and Morris, J. F., 1986, Structural plasticity in the hypothalamic supraoptic nucleus at lactation affects oxytocin-, but not vasopressin-secreting neurones, Neuroscience 17:661–678.PubMedCrossRefGoogle Scholar
  58. van den Pol, A. N., 1984, Colloidal gold and biotin-avidin conjugates as ultrastructural markers for neural antigens, Q.J. Exp. Physiol. 69:1–33.PubMedGoogle Scholar
  59. van den Pol, A., 1985, Dual ultrastructural localization of two neurotransmitter-related antigens: Colloidal gold-labeled neurophysin-immunoreactive supraoptic neurons receive per-oxidase-labeled glutamate decarboxylase- or gold-labeled GABA-immunoreactive synapses, J. Neurosci. 5:2940–2954.PubMedGoogle Scholar
  60. van den Pol, A. N., and Göres, T., 1986, Glycine immunoreactive neurons and presynaptic boutons in the spinal cord, Soc. Neurosci. Abstr. 12:771.Google Scholar
  61. van der Heyden, J. A. M., and Korf, J., 1978, Regional levels of GABA in the brain: Rapid semiautomated assay and prevention of postmortem increase by 3-mercapto-propionic acid, J. Neurochem. 31:197–203.PubMedCrossRefGoogle Scholar
  62. Weiler, R., and Ammermuller, J., 1986, Immunocytochemical localization of serotonin in intracellularly analyzed and dye-injected ganglion cells of the turtle retina, Neurosci. Lett. 72:147–152.PubMedCrossRefGoogle Scholar
  63. Zsuppan, F., 1984, A new approach to merging neuronal tree segments traced from serial sections, J. Neurosci. Methods 10:199–204.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Peter Somogyi
    • 1
  • Tamás F. Freund
    • 1
  1. 1.MRC Anatomical Neuropharmacology UnitUniversity Department of PharmacologyOxfordUK

Personalised recommendations