Advertisement

Use of Retrograde Fluorescent Tracers in Combination with Immunohistochemical Methods

  • Lana R. Skirboll
  • Karl Thor
  • Cinda Helke
  • Tomas Hökfelt
  • Brita Robertson
  • R. Long

Abstract

The use of retrograde markers in combination with methods for visualizing transmitters or related substances dates back to the mid-1970s (Ljungdahl et al., 1975), and since then many different combinations have been successfully applied for the tracing of transmitter specific pathways in the brain. Following the introduction of the fluorescent retrograde markers by Kuy-pers and his collaborators (Kuypers et al., 1977), several groups have described the use of these popular dyes in combination with immuno-histochemistry, formaldehyde-induced fluorescence histochemistry and acetylcholinesterase (AChE) staining (Hökfelt et al., 1979, 1980, 1983; Ross et al., 1981; Björklund and Skagerberg, 1979; van der Kooy and Hattori, 1980; Van der Kooy and Stembusch, Van der Kooy et al., 1981a,b; Van der Kooy and Sawchenko, 1982; Albanese and Bentivoglio, 1982; Skirboll and Hökfelt, 1983; Skirboll et al., 1983; Sawchenko and Swanson, 1981, 1982; Sawchenko et al., 1982; Snyder et al., 1986; Loewy et al., 1986; Thor and Heike, 1987; Charlton and Heike, 1987). The advantage of immunohistochemistry over the latter two techniques lies in its range. In principle, immunostaining permits visualization of any substance against which an antiserum can be raised. Fluorescent immunomarkers, in addition, can be conveniently combined with fluorescent immunohistochemistry through the use of multiple filters attached to the fluorescence microscope.

Keywords

Propidium Iodide Nucleus Tractus Solitarius Retrograde Transport Fluorescent Tracer Immunohistochemical Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albanese, A., and Bentivoglio, A., 1982, Retrograde fluorescent neuroal tracing combined with acetylcholinesterase histochemistry, Neurosci. Methods 6:121–127.CrossRefGoogle Scholar
  2. Alheid, B. F., Edwards, S. B., Kitai, S. T., Park, M. P., and Switzer, R. C., 1981, Methods for delivering tracers, in: Neuroanatomical Tract-Tracing Methods (L. Heimer and M. J. Robards, eds.), Plenum Press, New York, pp. 91–113.CrossRefGoogle Scholar
  3. Björklund, A., and Skagerberg, G., 1979, Evidence for a major spinal cord projection from the diencephalic All dopamine cell group in the rat using transmitter-specific fluorescent retrograde tracing, Brain Res. 177:170–175.PubMedCrossRefGoogle Scholar
  4. Charlton, C. G., and Helke, C. J., 1987, Substance P containing medullary projections to the intermediolateral cell column: Identification with retrogradely transported rhodamine labeled latex microspheres and immunohistochemistry, Brain Res. (in press).Google Scholar
  5. Coons, A. H., 1958, Fluroscent antibody methods, in: General Cytochemical Methods (J. F. Danielli, ed.), Academic Press, New York, pp. 394–422.Google Scholar
  6. Dahlström, A., 1971, Effects of vinblastine and colchicine on monoamine containing neurons of the rat with special regard to the axoplasmic transport of amine granules, Acta Neuro-pathol (Berl.) 5:226–237.Google Scholar
  7. Hökfelt, T., Terenius, L., Kuypers, H. G. J. M., and Dann, O., 1979, Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord, Neurosci. Lett. 14:55–60.PubMedCrossRefGoogle Scholar
  8. Hökfelt, T., Skirboll, L., Rehfeld, J. F., Goldstein, M., Markey, K., and Dann, O., 1980, A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunohistochemistry combined with retrograde tracing, Neuroscience 5:2093–2124.PubMedCrossRefGoogle Scholar
  9. Hökfelt, T., Skagerberg, G., Skirboll, L., and Björklund, A., 1983, Combination of retrograde tracing and neurotransmitter histochemistry, in: Handbook of Chemical Anatomy. Methods in Chemical Neuroanatomy, Vol. 1 (A. Björklund and T. Hökfelt, eds.), Elsevier, Amsterdam, pp. 228–285.Google Scholar
  10. Johnson, D. G., and De C Nogueira Araujo, G. M., 1981, A simple method of reducing the fading of immunofluorescence during microscopy, J. Immunol. Methods 43:349.PubMedCrossRefGoogle Scholar
  11. Katz, L. C., and Iarovici, D. M., 1988, Green fluorescent latex microspheres: a new retrograde tracer, Neurosci. Abst. 14:548.Google Scholar
  12. Katz, L. C., Burkhalter, A., and Dreyer, W. J., 1984, Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex, Nature 310:498–500.PubMedCrossRefGoogle Scholar
  13. Kuypers, H. G. J. M., and Huisman, A. M., 1984, Fluorescent tracers, in: Advances in Cellular Neurobiology, Vol. 5 (S. Fedoroff, ed.), Academic Press, Orlando, pp. 307–340.Google Scholar
  14. Kuypers, H. G. J. M., Bentivoglio, M., van der Kooy, D., and Catsman-Berrevoets, C. E., 1977, Retrograde transport of bisbenzimide and propidium iodide through axons to their parent cell bodies, Neurosci. Lett. 12:1–7.CrossRefGoogle Scholar
  15. Kuypers, H. G.J. M., Bentivoglio, M., van der Kooy, D., and Catsman-Berrevoets, C. E., 1979a, Retrograde axonal transport of fluorescent substances in the rat’s forebrain, Neurosci. Lett. 6:127–135.CrossRefGoogle Scholar
  16. Kuypers, H. G.J. M., Bentivoglio, M., van der Kooy, D., and Catsman-Berrevoets, C. E., 1979b, Retrograde transport of bisbenzimide and propidium iodide through axons to their parent cell bodies, Neurosci. Lett. 12:1–7.PubMedCrossRefGoogle Scholar
  17. A. Hökfelt, T. Goldstein, M, and Park, D., 1975, Retrograde peroxidase tracing of neurons combined with transmitter histochemistry, Brain Res. 84:313–319.PubMedCrossRefGoogle Scholar
  18. Loewy, A. D., Marson, L., Parkinson, D., Perry, M. A., and Sawyer, W. B., 1986, Descending noradrenergic pathways involved in the A5 depressor response, Brain Res. 386:313–324.PubMedCrossRefGoogle Scholar
  19. Nakane, P. K., 1969, Simultaneous localization of multiple tissue antigens using the peroxidase labeled antibody method: A study on pituitary glands of the rat, J. Histochem. Cytochem. 16:557–560.CrossRefGoogle Scholar
  20. Platt, J. L., and Michael A. F., 1983, Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine, J. Histochem. Cytochem. 31:840–842.PubMedCrossRefGoogle Scholar
  21. Ross, C. A., Armstrong, D. M., Ruggiero, D. A., Pickel, V. M., Joh, T. M., and Reis, D. J., 1981, Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: A combined immunocytochemical and retrograde transport demonstration, Neurosci. Lett. 25:257–262.PubMedCrossRefGoogle Scholar
  22. Sawchenko, P. E., and Swanson, L. W., 1981, A method for tracing biochemically defined pathways in the central nervous system using combined fluorescence retrograde transport and immunohistochemical techniques, Brain Res. 210:31–41.PubMedCrossRefGoogle Scholar
  23. Sawchenko, P. E., and Swanson, L. W., 1982, Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat, J. Comp. Neurol. 205:260–272.PubMedCrossRefGoogle Scholar
  24. Sawchenko, P. E., Swanson, L. W., and Joseph, S. A., 1982, The distribution and cells of origin of ACTH-stained varicosities in the paraventicular and supraoptic nuclei, Brain Res. 232:365–374.PubMedCrossRefGoogle Scholar
  25. Schmued, L. C., and Fallon, J. H., 1986, Fluoro-gold: A new fluorescent retrograde axonal tracer with numerous unique properties, Brain Res. 377:147–154.PubMedCrossRefGoogle Scholar
  26. Skirboll, L., and Hökfelt, T., 1983, Transmitter specific mapping of neuronal pathways by im-munohistochemistry combined with fluorescent dyes, in: IBRO Handbook Series: Methods in the Neurosciences. Immunohistochemistry (A. C. Cuello, ed.), John Wiley & Sons, Chichester.Google Scholar
  27. Skirboll, L., Hökfelt, T., Dockray, G., Rehfeld, J., Brownstein, M., and Cuello, C., 1983, Evidence for periaqueductal cholecystokinin-substance P neurons projecting to the spinal cord, J. Neurosci. 3:1151–1157.PubMedGoogle Scholar
  28. Skirboll, L., Hökfelt, T., Norell, G, Phillipson, D., Kuypers, H. G.J. M., Bentivoglio, M., Cats-man-Berrevoets, C. E., Visser, T. J., Steinbusch, H., Verhofstad, A., Cuello, A. C., Goldstein, M., and Brownstein, M., 1984, A method for transmitter identification of retro-gradely labeled neurons: Immunofluorescence combined with fluorescence tracing, Brain Res. Rev. 8:99–127.CrossRefGoogle Scholar
  29. Snyder, A. M., Zigmond, M. J., and Lund, R. D., 1986, Sprouting of serotonergic afferents into striatum after dopamine-depleting lesions in infant rats: A retrograde transport and immunocytochemical study, J. Comp. Neurol. 245:274–281.PubMedCrossRefGoogle Scholar
  30. Thor, K. B., and Heike, C., 1987, Central afferents to the nucleus tractus solitarius of the rat: Serotonin and substance P containing neurons in the hindbrain, .J Comp. Neurol, (in press).Google Scholar
  31. Tramu, G., Pillez, A., and Leonardelli, J., 1978, An efficient method of antibody elution for the successive or simultaneous location of two antigens by immunocytochemistry, J. Histochem. Cytochem. 26:322–327.CrossRefGoogle Scholar
  32. van der Kooy, D., and Hattori, T., 1980, Dorsal raphe cells with collateral projections in the substantia nigra and caudate—putamen. A fluorescent retrograde double labeling study in rat, Brain Res. 186:1–7.CrossRefGoogle Scholar
  33. van der Kooy, D., and Sawchenko, P. E., 1982, Characterization of serotonergic neurons using concurrent fluorescent retrograde axonal tracing and immunohistochemistry, J. Histochem. Cytochem. 30:794–798.PubMedCrossRefGoogle Scholar
  34. van der Kooy, D., and Steinbusch, H. W. M., 1980, Simultaneous fluorescent retrograde axonal tracing and immunofluorescent characterization of neurons, J. Neurosci. Res. 5:479–584.PubMedCrossRefGoogle Scholar
  35. van der Kooy, D., Coscina, D. V., and Hattori, T., 1981a, Is there a non-dopaminergic nigro-striatal pathway? Neuroscience 6:345–357.PubMedCrossRefGoogle Scholar
  36. van der Kooy, D., Hunt, S. P., Steinbusch, H. M., and Verhofstad, A., 1981b, Separate populations of cholecystokinin and 5-hydroxtryptamine containing neuronal cells in the rat dorsal raphe, and their contribution to the ascending raphe projections, J. Neurosci. 26:25–30.Google Scholar
  37. Vandesande, F., and Dierick, K., 1975, Identification of the vasopressin producing and of oxytocin producing neurons of the hypothalamic magnocellular neurosecretory system of the cat, Cell Tissue Res. 164:153–162.PubMedCrossRefGoogle Scholar
  38. Warr, W. B., de Olmos, J. S., and Heimer, L., 1981, Horseradish peroxidase: The basic procedure, in: Neuroanatomical Tract-Tracing Methods (L. Heimer and M. J. RoBards, eds.), Plenum Press, New York, 207–256.CrossRefGoogle Scholar
  39. Wessendorf, M. W., and Elde, R. P., 1986, Characterization of an immunofluorescence technique for the demonstration of coexisting neurotransmitters within nerve fibers and terminals, J. Histochem. Cytochem. 33:984.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Lana R. Skirboll
    • 1
  • Karl Thor
    • 2
  • Cinda Helke
    • 2
  • Tomas Hökfelt
    • 3
  • Brita Robertson
    • 1
    • 4
  • R. Long
    • 1
  1. 1.Clinical Neuroscience BranchNational Institute of Mental HealthBethesdaUSA
  2. 2.Department of PharmacologyUniformed Services University of the Health SciencesBethesdaUSA
  3. 3.Department of HistologyKarolinska InstituteStockholmSweden
  4. 4.Department of AnatomyKarolinska InstituteStockholmSweden

Personalised recommendations