Advertisement

Receptor Autoradiography

  • William A. GearyII
  • G. Frederick Wooten

Abstract

Receptor autoradiography involves the identification of receptors in tissue fragments or sections with the use of pharmacological binding methods. The earliest binding studies utilized high-specific-activity radiolabeled receptor li-gands and crude membrane preparations. The compound or ligand was bound selectively to a receptor site, and the membranes were then separated from the radiolabeled drug solution. Under appropriate conditions, the quantity of radiolabeled drug that bound to the membranes represented the quantity of receptors in the tissue. In order to apply binding methods to the study of receptors in a tissue as complex as the brain, modifications have been made in binding methods to allow for autoradiographic localization of specifically bound radiolabeled compounds.

Keywords

Ligand Concentration Tritium Concentration Receptor Autoradiography Quantitative Autoradiography Autoradiographic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, G. M., Schwartzman, R. J., Bell, R. D., Yu, J., and Renthal, A., 1981, Quantitative measurement of local cerebral metabolic rate for glucose using tritiated 2-deoxyglucose, Brain Res. 223:59–67.PubMedCrossRefGoogle Scholar
  2. Boyson, S. J., McGonigle, P., and Molinoff, P. B., 1986, Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain, J. Neurosci. 6:3177–3188.PubMedGoogle Scholar
  3. Duncan, G. E., Stumpf, W. E., and Pilgrim, C., 1987, Cerebral metabolic mapping at the cellular level with dry-mount autoradiography of [3H]2-deoxyglucose, Brain Res. 401:43–49.PubMedCrossRefGoogle Scholar
  4. Geary, W. A., and Wooten, G. F., 1983, Quantitative film autoradiography of opiate agonists and antagonists, J. Pharmacol. Exp. Ther. 225:234–240.PubMedGoogle Scholar
  5. Geary, W. A., and Wooten, G. F., 1985a, Quantitative film autoradiography for tritium: Methodological considerations, Brain Res. 337:99–108.PubMedCrossRefGoogle Scholar
  6. Geary, W. A., and Wooten, G. F., 1985b, Regional tritium quenching in quantitative autoradiography of the central nervous system, Brain Res. 336:334–336.PubMedCrossRefGoogle Scholar
  7. Gee, C. E., Chen, C. C., and Roberts, J. L., 1983, Identification of proopiomelanocortin neurons in rat hypothalamus by in situ of cDNA-mRNA hybridization, Nature 306:374–376.PubMedCrossRefGoogle Scholar
  8. Hamel, E., and Beaudet, A., 1987, Opiod receptors in rat neostriatum: Radioautographic distribution at the electron microscopic level, Brain Res. 401:239–257.PubMedCrossRefGoogle Scholar
  9. Hunt, S. P., and Mantgth, P. W., 1984, Radioimmunocytochemistry with [3H]biotin, Brain Res. 291:203–217.PubMedCrossRefGoogle Scholar
  10. Kuhar, M. J., and Yamamura, H. I., 1975, Light autoradiographic localization of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist, Nature 253:560–561.PubMedCrossRefGoogle Scholar
  11. McLean, S., Rothman, R. B., and Herkenham, M., 1986, Autoradiographic localization of /x-and ô-opiate receptors in the forebrain of the rat, Brain Res. 378:49–60.PubMedCrossRefGoogle Scholar
  12. Mendelsohn, F. A. O., 1984, Localization of angiotensin converting enzyme in rat forebrain and other tissues by in vitro autoradiography using 125I-labeled MK 351 A, Clin. Exp. Pharmacol. Physiol. 11:431–436.PubMedCrossRefGoogle Scholar
  13. Palácios, J. M., Niehoff, D. L., and Kuhar, M. J., 1981, Receptor autoradiography with tritium-sensitive film: Potential for computerized densitometry, Neurosci. Lett. 25:101–105.PubMedCrossRefGoogle Scholar
  14. Pegg, A. E., Seely, J., and Zagon, I. S., 1982, Autoradiographic identification of ornithine decarboxylase in mouse kidney by means of α[5-14C]difluoromethylornithine, Science 217:68–70.PubMedCrossRefGoogle Scholar
  15. Penney, J. B., Frey, K., and Young, A. B., 1981, Quantitative autoradiography of neurotransmitter receptors using tritium-sensitive film, Eur. J. Pharmacol. 72:421–422.PubMedCrossRefGoogle Scholar
  16. Schoch, P., Richards, J. G., Häring, P., Iakacs, B., Stähli, C., Staehelin, T., Hafely, W., and Möhler, H., 1985, Co-localization of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies, Nature 314:168–171.PubMedCrossRefGoogle Scholar
  17. Strader, C. D., Pickel, V. M., Joh, T. H., Strohsacker, M. W., Schorr, R. G. L., Lefkowitz, R. J., and Caron, M. G., 1983, Antibodies to the β-adrenergic receptor: Attenuation of catechol-amine-sensitive adenylate cyclase and demonstration of postsynaptic receptor localization in brain, Proc. Natl. Acad. Sci. U.S.A. 80:1840–1844.PubMedCrossRefGoogle Scholar
  18. Stumpf, W. E., and Roth, L. G., 1966, High resolution autoradiography with dry-mounted, freeze-dried frozen sections. Comparative study of six methods using two diffusible compounds [3H]estradiol and [3H]mesobilirubinogen, J. Histochem. Cytochem. 14:274–287.PubMedCrossRefGoogle Scholar
  19. Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H., and Korn, H., 1985, Distribution of glycine receptors at central synapses: An immunoelectron microscopy study, J. Cell Biol. 101:683–688.PubMedCrossRefGoogle Scholar
  20. Unnerstall, J. R., Niehoff, D. L., Kuhar, M. J., and Palacios, J. M., 1982, Quantitative receptor autoradiography using [3H] Ultrofilm: Application to multiple benzodiazepine receptors, J. Neurose. Methods 6:59–73.CrossRefGoogle Scholar
  21. Zivin, J. A., and Waud, D. R., 1986, Analysis of one-component saturable systems such as ligand binding, enzyme kinetic, uptake, and transport data, J. Pharmacol. Methods 16:1–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • William A. GearyII
    • 1
  • G. Frederick Wooten
    • 1
  1. 1.Department of NeurologyUniversity of Virginia Medical CenterCharlottesvilleUSA

Personalised recommendations