Developments toward a Recombinant Pertussis Vaccine

  • W. Neal Burnette
  • David W. Whiteley
  • Vernon L. Mar
  • Drusilla L. Burns
  • Harvey R. Kaslow
  • Witold Cieplak
  • Jerry M. Keith
  • Timothy D. Bartley

Abstract

Vaccines produced from chemically “inactivated” Bordetella pertussis have been remarkably effective in diminishing the incidence of whooping cough in the developed world (Hinman and Koplan, 1984). The frequency of adverse vaccine reactions attributed to pertussis immunization, however, has led to a reassessment of the vaccine material and its components (Hinman and Onorato, 1987). In an effort to provide a less reactogenic vaccine, we have focused on a major virulence factor of the Gram-negative etiologic agent. Pertussis toxin (PTX ), also known as lymphocytosis promotion factor (LPF), islet activating protein (IAP), histamine sensitization factor (HSF), and pertussigen (Munoz, 1985), has been shown to be both an important mediator of pertussis disease (Pittman, 1979) and an effective protective element in acellular vaccines that have reduced reactogenicity in pediatric vaccine recipients (Manclark and Cowell, 1984; Robinson et al., 1985; Kallings et al.,1988).

Keywords

Codon Cysteine Adenosine Lysine Oligomer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, W.J., Munoz, J.J., Peacock, M.G., Schad, P.A., Cowell, J.L., Burchall, J.J., Lim, M., Kent, A., Steinman, L., and Falkow, S., 1988, ADP-ribosyltransferase activity of pertussis toxin and immunomodulation by Bordetella pertussis, Science 240:656.Google Scholar
  2. Brennan, M.J., David, J.L., Kenimer, J.G., and Manclark, C.R., 1988, Lectin-like binding of pertussis toxin to a 165-kilodalton Chinese hamster ovary cell glycoprotein, J. Biol. Chem. 263:4895.PubMedGoogle Scholar
  3. Brennan, M.J., David, J.L., Kenimer, J.G., and Manclark, C.R., 1988, Lectin-like binding of pertussis toxin to a 165-kilodalton Chinese hamster ovary cell glycoprotein, J. Biol. Chem. 263:4895.PubMedGoogle Scholar
  4. Burnette, W.N., Cieplak, W., Mar, V.L., Kaljot, K.T., Sato, H., and Keith, J.M., 1988b, Pertussis toxin Sl mutant with reduced enzyme activity and a conserved protective epitope, Science 242:72.PubMedCrossRefGoogle Scholar
  5. Burns, D.L., Kenimer, J.G., and Manclark, C.R., 1987, Role of the A subunit of pertussis toxin in alteration of Chinese hamster ovary cell morphology, Infect. Immun. 55:24.PubMedGoogle Scholar
  6. Chou, P.Y. and Fasman, G.D., 1978, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol. 47:45.PubMedGoogle Scholar
  7. Cieplak, W., Burnette, W.N., Mar, V.L., Kaljot, K.T., Morris, C.F., Chen, K.K., Sato, H. and Keith, J.M., 1988, Identification of a region in the S1 subunit of pertussis toxin that is required for enzymatic activity and that contributes to the formation of a neutralizing antigenic determinant, Proc. Natl. Acad. Sci. U.S.A. 85:4667.PubMedCrossRefGoogle Scholar
  8. Devereux, J., Haeberli, P., and Smithies, O., 1984, A comprehensive set of sequence analysis programs for the VAX, Nucl. Acids Res. 12:387.PubMedCrossRefGoogle Scholar
  9. Gilman, A.G., 1987, G proteins:transducers of receptorgenerated signals, Annu. Rev. Biochem. 56:615.PubMedCrossRefGoogle Scholar
  10. Goldman, W.E., Klapper, D.G., and Baseman, J.B., 1982, Detection, isolation and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells, Infect. Immun. 36:782.PubMedGoogle Scholar
  11. Hardy, S.J.S., Holmgren, J., Johansson, S., Sanchez, J., and Hirst, T.R., 1988, Coordinated assembly of multisubunit proteins:oligomerization of bacterial enterotoxins in vivo and in vitro, Proc. Natl. Acad. Sci. U.S.A. 85:7109.PubMedCrossRefGoogle Scholar
  12. Hewlett, E.L., Sauer, K.T., Myers, G.A., Cowell, J.L., and Guerrant, R.L., 1983, Induction of a novel morphological response in Chinese hamster ovary cells by pertussis toxin, Infect. Immun. 40:1198.PubMedGoogle Scholar
  13. Hewlett, E.L., Urban, M.A., Manclark, C.R. and Wolff, J., 1976, Extracytoplasmic adenylate cyclase of Bordetella pertussis, Proc. Natl. Acad. Sci. U.S.A. 73:1926.PubMedCrossRefGoogle Scholar
  14. Hinman, A.R. and Koplan, J.P., 1984, Pertussis and pertussis vaccine:reanalysis of benefits, risks, and costs, J. Amer. Med. Assoc. 251:3109.CrossRefGoogle Scholar
  15. Hinman, A.R. and Onorato, I.M., 1987, Acellular pertussis vaccines, Pediatr. Infect. Dis. J. 6:341.PubMedGoogle Scholar
  16. Kallings, L.O., and Ad Hoc Group for the Study of Pertussis Vaccines, 1988, Placebo-controlled trial of two acellular pertussis vaccines in Sweden - protective efficacy and adverse events, Lancet i:955.Google Scholar
  17. Kaslow, H.R. and Lesikar, D.D., 1987, Sulfhydryl-alkylating reagents inactivate the NAD glycohydrolase of pertussis toxin, Biochemistry 26:3297.CrossRefGoogle Scholar
  18. Katada, T., Tamura, M., and Ui, M., 1983, The A protomer of islet-activating protein, pertussis toxin, is an active peptide catalyzing ADP-ribosylation of a membrane protein, Arch. Biochem. Biophys. 224:290.PubMedCrossRefGoogle Scholar
  19. Katada, T. and Ui, M., 1982, Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein, Proc. Natl. Acad. Sci. U.S.A. 79:3129.PubMedCrossRefGoogle Scholar
  20. LeDur, A., Caroff, M., Chaby, R. and Szabo, L., 1978, A novel type of endotoxin structure present in Bordetella pertussis, Eur. J. Biochem. 84:579.CrossRefGoogle Scholar
  21. LeDur, A., Chaby, R. and Szabo, L., 1980, Isolation of two protein-free and chemically different lipopolysaccharides from Bordetella pertussis phenol-extracted endotoxin, J. Bacteriol. 143:78.Google Scholar
  22. Manclark, C.R. and Cowell, J.L., 1984, Pertussis, in:“Bacterial Vaccines,” R. Germanier, ed., Academic Press, Orlando.Google Scholar
  23. Moss, J., Stanley, S.J., Burns, D.L., Hsia, J.A., Yost, D.A., Myers, G.A., and Hewlett, E.L., 1983, Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis (isletactivating protein ) J. Biol. Chem. 258:11879.PubMedGoogle Scholar
  24. Munoz, J.J., 1985, Biological activities of pertussigen (pertussis toxin) in:“Pertussis Toxin,” R.D. Sekura, J. Moss, and M. Vaughn, eds., Academic Press, Orlando.Google Scholar
  25. Neer, E.J. and Clapham, D.E., 1988, Roles of G protein subunits in transmembrane signalling, Nature 333:129.PubMedCrossRefGoogle Scholar
  26. Okajima, F., Katada, T., and Ui, M., 1985, Coupling of the guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, perti2sis toxin:a possible role of the toxin substrate in Ca -mobilizing receptor mediated signal transduction, J. Biol. Chem. 260:6761.PubMedGoogle Scholar
  27. Pittman, M., 1979, The cause of the harmful effects and prolonged immunity of whooping cough. A hypothesis, Rev. Infect. Dis. 1:401.PubMedCrossRefGoogle Scholar
  28. Robinson, A., Irons, L.I., and Ashworth, L.A.E., 1985, Pertussis vaccine:present status and future prospects, Vaccine 3:11.PubMedCrossRefGoogle Scholar
  29. Rogel, A., Farfel, Z., Goldschmidt, S., Shiloach, J., and Hanski, E., 1983, Bordetalla pertussis adenylate cyclase :identification of multiple forms of the enzyme by antibodies, J. Biol. Chem. 263 :13310.Google Scholar
  30. Rosenthal, R. S., Nogami, W., Cookson, B.T., Goldman, W.E., and Folkening, W.J., 1987, Major fragment of soluble peptideoglycan released from growing Bordetella pertussis is tracheal cytotoxin, Infect. Immun. 55 :2117.PubMedGoogle Scholar
  31. Sato, H., Ito, A., Chiba, J., and Sato, Y., 1984. Monoclonal antibody against pertussis toxin :effect on toxin activity and pertussis infections, Infect. Immun. 46 :422.PubMedGoogle Scholar
  32. Sato, H., Sato Y., Ito, A. and Ohishi, I., 1987, Effect of monoclonal antibody to pertussis toxin on toxin activity, Infect. Immun. 55 :909.PubMedGoogle Scholar
  33. Tamura, M., Nogimori, K., Yajima, M., Ase, K., and Ui, M., 1983 A role of the B-oligomer moiety of islet-activating protein, pertussis toxin, in development of the biological effects on intact cells, J. Biol. Chem. 258: 6756PubMedGoogle Scholar
  34. Tamura, M., Nogimori, K., Murai, S., Yajima, M., Ito, K., Katada, T., Ui, M., and Ishi, S., 1982, Subunit structure of islet-activating protein, pertussis toxin, in conformi ty with the A-B model, Biochemistry 21 :5516.PubMedCrossRefGoogle Scholar
  35. Wardlaw, A. C. and Parton, R., 1983 Bordetella pertussis toxins, Pharmacol. Ther. 19:1.CrossRefGoogle Scholar
  36. Weiss, A.A. and Hewlett, E. L. 1986, virulence factors of Bordetella pertussis, Annu. Rev. Microbiol. 40 :661.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • W. Neal Burnette
    • 1
  • David W. Whiteley
    • 1
  • Vernon L. Mar
    • 1
  • Drusilla L. Burns
    • 2
  • Harvey R. Kaslow
    • 3
  • Witold Cieplak
    • 4
  • Jerry M. Keith
    • 4
  • Timothy D. Bartley
    • 1
  1. 1.Amgen Inc.Thousand OaksUSA
  2. 2.CBER, FDABethesdaUSA
  3. 3.Dept. Physiol. Biophys.USC School of MedicineLos AngelesUSA
  4. 4.NIAID Rocky Mountain LaboratoriesHamiltonUSA

Personalised recommendations