(N-3) and (N-6) Fatty Acid Metabolism

  • Howard Sprecher

Abstract

Dietary (n−3) fatty acids mediate physiological processes in at least two different ways. The activities of the liver enzymes that metabolize fatty acids and synthesize triglycerides are modified by the type of fat that is fed. These changes include an elevated rate of fatty acid oxidation along with a reduced rate of fatty acid biosynthesis1,2. The mechanism of action of (n−3) acids at the enzyme level is still a matter of conjecture. Clarke and Armstrong3 have recently reported that rats fed a fish oil diet had reduced levels of mRNA for fatty acid synthetase. These findings suggest that (n−3) fatty acids, or one of their metabolites, regulate enzyme synthesis rather than enzyme activity.

Keywords

Cholesterol Corn Ethyl Attenuation Prostaglandin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Nestel, S. Wong and D.L. Topping, Dietary long chain polyenoic acids: 1. Suppression of triglyceride formation in rat liver: 2. Attenuation in man of the effects of dietary cholesterol on lipoprotein cholesterol, in: “Health Effects of Polyunsaturated Fatty Acids in Seafoods”, A.P. Simopoulos, R.R. Kifer and R.E. Martin, eds., Academic Press, Orlando, Florida, pp. 211–246 (1986).Google Scholar
  2. 2.
    P.J. Nestel, D. Topping, J. Marsh, S. Wong, H. Barrett, P. Roach and B. Kambouris, Effects of polyenoic fatty acids (n-3) on lipid and lipoprotein metabolism, in: “Polyunsaturated Fatty Acids and Eicosanoids”, W.E.M. Lands, ed., American Oil Chemists’ Society, Champaign, Illinois, pp. 94–102 (1987).Google Scholar
  3. 3.
    S.D. Clarke and M.K. Armstrong, Suppression of rat liver fatty acid synthetase mRNA level by dietary fish oil, Federation Proceedings Abstracts, Abstract 3235: 1988.Google Scholar
  4. 4.
    J.T. Bernert and H. Sprecher, Studies to determine the role rates of chain elongation and desaturation play in regulating the unsaturated fatty acid composition of rat liver lipids, Biochim. Biophys. Acta 398: 354 (1975).CrossRefGoogle Scholar
  5. 5.
    B.O. Christophersen, T-A. Hagve and J. Norseth, Studies on the regulation of arachidonic acid synthesis in isolated liver cells, Biochim. Biophys. Acta 712: 305 (1982).CrossRefGoogle Scholar
  6. 6.
    T-A. Hagve and B.O. Christophersen, Linolenic acid desaturation and chain elongation and rapid turnover of phospholipid (n-3) fatty acids in isolated rat liver cells, Biochim. Biophys. Acta 753: 339 (1983).CrossRefGoogle Scholar
  7. 7.
    M.A. Thiede, J. Ozols and P. Strittmatter, Construction and sequence of cDNA for rat liver stearoyl-coenzyme A desaturase, J. Biol. Chem. 261: 13230 (1986).PubMedGoogle Scholar
  8. 8.
    M.A. Thiede and P. Strittmatter, The induction and characterization of rat liver stearyl-CoA desaturase mRNA, J. Biol. Chem. 260: 14459 (1985).PubMedGoogle Scholar
  9. 9.
    T.W. Weiner and H. Sprecher, Arachidonic acid, 5,8,11eicosatreinoic acid and 5,8,11,14,17-eicosapentaenoic acid, dietary manipulation of the levels of these acids in rat liver and platelet phospholipids and their incorporation into human platelet phospholipid, Biochim. Biophys. Acta 792: 293 (1984).CrossRefGoogle Scholar
  10. 10.
    W-H. Kunau and F. Bartnik, Studies on the partial degradation of polyunsaturated fatty acids in rat-liver mitochondria, Eur. J. Biochem. 48: 311 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    C. von Schacky and P.C. Weber, Metabolism and effects on platelet function of the purified eicosapentaenoic and docosahexaenoic acid in humans, J. Clin. Invest. 76: 2446 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Fischer, A. Vischer, V. Preac-Mursil and P.C. Weber, Dietary docosahexaenoic acid is ketroconverted in man to eicosapentaenoic acid, which can be quickly transformed to prostaglandin I3, Prostaglandins 34: 367 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    J.T. Bernert and H. Sprecher, An analysis of partial reactions in the overall chain elongation of saturated and unsaturated fatty acids in rat liver microsomes, J. Biol. Chem. 252: 6736 (1977).PubMedGoogle Scholar
  14. 14.
    M.N. Nagai, L. Cook, R. Prasad and D. Cinti, Do rat hepatic microsomes contain multiple NADPH-supported fatty acid chain elongation pathways or a single pathway? Biochem. Biophys. Res. Commun. 140: 74 (1986).CrossRefGoogle Scholar
  15. 15.
    R. Jeffcoat and A.J. James, The regulation of desaturation and elongation of fatty acids in mammals, in: Fatty Acid Metabolism and its Regulation“, Vol. 7, New Comprehensive Biochemistry, S. Numa, ed., Elsevier, New York, pp. 85–112 (1984).CrossRefGoogle Scholar
  16. 16.
    J.D. Lefkowith, V. Flippo, H. Sprecher and P. Needleman, Paradoxical conservation of cardiac and renal arachidonate content in essential fatty acid deficiency, J. Biol. Chem. 260: 15736 (1985).PubMedGoogle Scholar
  17. 17.
    P. Falardeau, M. Hamberg, and B. Samuelsson, Metabolism of 8,11,14-eicosatrienoic acid in platelets, Biochim. Biophys. Acta 491: 193 (1976).Google Scholar
  18. 18.
    M. Hamberg and B. Samuelsson, Prostaglandin endoperoxides: Novel transformation of arachidonic acid in human platelets, Proc. Natl. Acad. Sci. USA 71: 3400 (1974).PubMedCrossRefGoogle Scholar
  19. 19.
    M. VanRollins, L. Horrocks and H. Sprecher, Metabolism of 7,10,13,16-docosatetraenoic acid to dihomothromboxane, 14-hydroxy-7,10,12-nonadecatrienoic acid and hydroxy acids by human platelets, Biochim. Biophys. Acta 833: 272 (1985).CrossRefGoogle Scholar
  20. 20.
    M. Milks and H. Sprecher, Metabolism of 4,7,10,13,16docosapentaenoic acid by platelet cyclooxygenase and lipoxygenase, Biochim. Biophys. Acta 835: 29 (1985).CrossRefGoogle Scholar
  21. 21.
    Sprecher, H., M. VanRollins, F. Sun, A. Wyche, and P. Needleman, Dihomo-prostaglandin and thromboxanes: A novel prostaglandin family from adrenic acid that may specifically be synthesized in the kidney, J. Biol. Chem. 257: 3912 (1982).PubMedGoogle Scholar
  22. 22.
    W.B. Campbell, J.R. Falck, J.R. Okita, A.R. Johnson and K.S. Callahan, Synthesis of dihomoprostaglandin from adrenic acid (7,10,13,16-docosatetraenoic acid) by human endothelial cells, Biochim. Biophys. Acta 837: 67 (1985).CrossRefGoogle Scholar
  23. 23.
    M. Hamberg, Transformation of 5,8,11,14,17eicosapentaenoic acid in human platelets, Biochim. Biophys. Acta 618: 389 (1980).CrossRefGoogle Scholar
  24. 24.
    E.H. Oliw, H. Sprecher and M. Hamberg, Isolation of two novel prostaglandins in human seminal fluid, J. Biol. Chem. 261: 2675 (1986).PubMedGoogle Scholar
  25. 25.
    M. Hamberg, w-Oxygenation of 6,9,12-octadecatrienoic acid in human platelets, Biochem. Biophys. Res. Commun. 117: 593 (1983).Google Scholar
  26. 26.
    M.M. Careaga and H. Sprecher, Metabolism of 8,11,14,17eicosatetraenoic acid by human platelet lipoxygenase and cyclooxygenase, Biochim. Biophys. Acta 920: 94 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    M.I. Aveldano and H. Sprecher, Synthesis of hydroxy fatty acids from 4,7,10,13,16,19-[1–14C]docosahexaenoic acid, J. Biol. Chem. 258: 9339 (1983).PubMedGoogle Scholar
  28. 28.
    M.M. Careaga and H. Sprecher, Synthesis of two hydroxy fatty acids from 7,10,13,16,19-docosapentaenoic acid by human platlets, J. Biol. Chem. 259: 14413 (1984).PubMedGoogle Scholar
  29. 29.
    Y-K. Wong, P. Westlund, M. Hamberg, E. Granstrom, PH-W. Chao and B. Samuelsson, 15-Lipoxygenase in human platelets, J. Biol. Chem. 260: 9162 (1985).PubMedGoogle Scholar
  30. 30.
    R.W. Bryant, J.M. Bailey, T. Schewe and S.M. Rappoport, Positional specificity of a reticulocyte lipoxygenase. Conversion of arachidonic acid to 15S-hydroperoxyeicosatetraenoic acid, J. Biol. Chem. 257: 6050 (1982).PubMedGoogle Scholar
  31. 31.
    F.H. Chilton, J.M. Ellis, S.C. Olson and R.L. Wykle, 1–0-Alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. A common source of platelet-activating factor and arachidonate in human polymorphonulcear leukocytes, J. Biol. Chem. 259: 12014 (1984).PubMedGoogle Scholar
  32. 32.
    F.H. Chilton and R.C. Murphy. Remodeling of arachidonate-containing phosphoglycerides within the human neutrophil, J. Biol. Chem. 261: 7771 (1986).PubMedGoogle Scholar
  33. 33.
    C.L. Swendsen, F.H. Chilton, J.T. 0/Flaherty, J.R. Surles, C. Piantadosi, M. Waite and R.L. Wykle. Human neutrophils incorporate arachidonic acid and saturated fatty acids into separate molecular species of phospholipids, Biochim. Biophys. Acta919: 79 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Howard Sprecher
    • 1
  1. 1.Department of Physiological ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations