Advertisement

Different Doses of Fish — Oil Fatty Acid Ingestion in Active Rheumatoid Arthritis: A Prospective Study of Clinical and Immunological Parameters

  • Joel M. Kremer
  • David A. Lawrence
  • William Jubiz

Abstract

Lee, et al, have demonstrated that fish — oil ingestion leads to decreased production of leukotriene B4 (LTB4) derived from arachidonate through the 5-lipoxygenase pathway with the new production of leukotriene B5 (LTB5) from EPA(1). Since LTB4 is a potent inflammatory and chemotactic compound, a decrease in its production could favorably affect the clinical manifestations of an inflammatory disease like rheumatoid arthritis. It was not surprising, then, when we observed improvement in certain clinical manifestations of rheumatoid arthritis which were significantly correlated with decreased production of neutrophil LTB4 in patients receiving fish — oil(2).

Keywords

Active Rheumatoid Arthritis Rheumatic Drug Albany Medical College Rheumatoid Synovial Cell Intraarticular Steroid Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee TH, Hoover RL, Williams JD, et al. Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med 1985; 321: 1217–1224CrossRefGoogle Scholar
  2. 2.
    Kremer JM, Jubiz W, Michalek A, Rynes RI, Bartholomew LE, Bigaouette J, Timchalk M, Beeler D, Lininger L. Fish–oil fatty acid supplementation in active rheumatoid arthritis. Ann Int Med 1987; 106: 497–503PubMedCrossRefGoogle Scholar
  3. 3.
    Payan DG, Goetzl EJ. Specific suppression of human T lymphocyte function by leukotriene 84. J Immunol 1983; 131: 551–553PubMedGoogle Scholar
  4. 4.
    Gualde N, Durgaprasadarao A, Goodwin JS. Effect of lipoxygenase metabolites of arachadonic acid on proliferation of human T cells and T cell subsets. J Immunol 1985; 134: 1125–1129PubMedGoogle Scholar
  5. 5.
    Rola-Pleszczynski M, Bouvrette L, Gingras D, Girard M. Identification of interferon- as the lymphokine that mediates leukotriene 8 induced immunoregulation. J Immunol 1987: 139: 513–517PubMedGoogle Scholar
  6. 6.
    Blomgren H, Hammarstrom S, Wasserman J. Synergistic enhancement of mitogen responses of human lymphocytes by inhibitors of cyclo-oxygenase and 5,8,11-eicosatriynoic acid, an inhibitor of 12-lipoxygenase and leukotriene biosynthesis. Int Archs Allergy Apply Immun 1987; 83: 247–255CrossRefGoogle Scholar
  7. 7.
    Dinarello CA. Biology of interleukin-1. FASEB J 1988; 2: 108–115PubMedGoogle Scholar
  8. 8.
    Dayer JM, de Rochemonteix B, Burrus B, Demczuk S, Dinarello CA. Human recombinant interleukin 1 stimulates collagenase and prostaglandin Ee production by human synovial cells. J Clin Invest 1986; 77: 645–648PubMedCrossRefGoogle Scholar
  9. 9.
    Dinarello, CA. An update on human interleukin-1: from molecular to to clinical relevance. J Clin Immunol 1985; biology 5: 287–297.Google Scholar
  10. 10.
    Kremer JM, Bigauoette J, Michalek AV, Timchalk MA, Lininger L, Rynes RI, Huyck C, Zieminski J, Bartholomew LE. Effects of manipulation of dietary fatty acids on clinical manifestations of rheumatoid arthritis. Lancet 1985; Jan. 26: 184–187Google Scholar
  11. 11.
    Sperling RI, Weinblatt M, Robin JL, Ravalese J III, Hoover RL, Hoase F, Coblyn JS, Fraser PA, Spur BW, Robinson DR, Lewis RA, Austen KF. Effects of dietary supplementation with marine fish oil on leukocyte lipid mediator generation and function in rheumatoid arthritis. Arthritis Rheum 1987; 30: 988–997PubMedCrossRefGoogle Scholar
  12. 12.
    Jubiz W, Draper RE, Gale J, Nolan G. Decreased leukotriene B. synthesis by polymorphonuclear leukocytes from male patients with diabetes mellitus. Postaglandins Leukotrienes Med 1984; 14: 305. 311Google Scholar
  13. 13.
    Mendelsohn J, Skinner A, Kornfeld S. The rapid induction by PHA of increased r-aminoisobutyric acid uptake by lymphocytes. J Clin Invest 1971; 50: 818–826PubMedCrossRefGoogle Scholar
  14. 14.
    Noelle RJ, Lawrence DA. Determination of glutathione in lymphocytes and possible association of redox state and proliferative capacity of lymphocytes. Biochem J 1981; 571–579Google Scholar
  15. 15.
    Rosenwasser LJ, Dinarello CA.- Antibody of leukocyte pyrogen to enhance phytohemagglutinin induced murine thymocyte proliferation. Cell Immunol 1981; 63: 134–142PubMedCrossRefGoogle Scholar
  16. 16.
    Gillis S, Germ MM, Ou W, Smith KA. T-cell growth factor, parameters of production and a quantitative microassay for activity. J Immunology 1978; 120: 2027–2032Google Scholar
  17. 17.
    Ayers FC, Warner GL, Smith KL, Lawrence DA. Fluorometric quantitation of cellular and nonprotein thiols. Anal Biochem 1986; 154: 186–193PubMedCrossRefGoogle Scholar
  18. 18.
    Check IJ, Piper M. Quantitation of immunoglobulin. In: Rose NR, Friedman H, Fahey JL, eds. Manual of clinical laboratory immunology; Washington, DC: ASM Press, 1986: 138–151Google Scholar
  19. 19.
    Traill KN, Wick G. Lipids and lymphocyte function. Immunol Today 1984; 5: 70–75CrossRefGoogle Scholar
  20. 20.
    Johnston PV. Dietary fat, eicosanoids, and immunity. Adv Lipid Research 1985; 21: 103–141Google Scholar
  21. 21.
    Del Buono BJ, Williamson PL, Schlegel RA. Alterations in plasma membrane lipid organization during lymphocyte differentiation. J of Cell Physiology 1986; 126: 379–388CrossRefGoogle Scholar
  22. 22.
    Erickson KL. Dietary fat modulation of immune response. Int J Immunopharmac 1986; 8: 529–543CrossRefGoogle Scholar
  23. 23.
    Endres, S. Personal communication.Google Scholar
  24. 24.
    Dinarello CA. Interleukin-1. Rev Infect Dis 1984; 6: 51–90PubMedCrossRefGoogle Scholar
  25. 25.
    Dinarello CA. Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 1984; 311: 1413–1418PubMedCrossRefGoogle Scholar
  26. 26.
    Luger TA, Charon JA, Colot M, Micksche M, Oppenheim JJ. Chemotactic properties of partially purified human epidermal cell-derived thymocyte-activating factor for polymorphonuclear and mononuclear cells. J Immunol 1983; 131: 816–820PubMedGoogle Scholar
  27. 27.
    Schmidt JA, Mizel SB, Cohen D, Green I. Interleukin-1: a potential regulator of fibroblast proliferation. J Immunol 1982; 128: 2177–2182PubMedGoogle Scholar
  28. 28.
    Mizel SB, Dayer JM, Krane SM, Mergenhagen SE. Stimulation of rheumatoid synovial cell collagenase and prostaglandin production bypartially purified lymphocyte-activating factor (interleukin 1). Proc Natl Acad Sci USA 1981; 78: 2474–2477PubMedCrossRefGoogle Scholar
  29. 29.
    Goto M, Sasano M, Yamanaka H, Miyasaka N, Kamatani N, Inoue K, Nishioka K, Miyamoto T. Spontaneous production of an interleukin-1-like factor by cloned rheumatoid synovial cells in long-term culture. J Clin Invest 1987; 80: 786–796PubMedCrossRefGoogle Scholar
  30. 30.
    Miyasaka N, Sato K, Goto M, Sasano M, Natsuyama M, Inoue K, Nishioka K. Augmented interleukin-1 production and HLA-DR expression in the synovium of rheumatoid arthritis patients. Arthritis Rheum 1988; 4: 480–486CrossRefGoogle Scholar
  31. 31. Di Giovine FS, Malawista SE, Nuki G, Duff GW. Interleukin-1 (IL-1) as a mediator of crystal arthritis. J Immunol 1987; 138:3213–3218Google Scholar
  32. 32.
    Gowen M, Wood DD, Ihrie EJ, et al. An IL-1 like factor stimulates bone resorption in vitro. Nature 1983; 306: 378–380PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Joel M. Kremer
    • 1
  • David A. Lawrence
    • 1
  • William Jubiz
    • 1
  1. 1.Division of Rheumatology, Department of Microbiology/ImmunologyAlbany Medical College and Albany Veteran’s Administration HospitalAlbanyUSA

Personalised recommendations