Polyunsaturated Fatty Acids of the n-3 Serie and Nervous System Development

  • Jean-Marie Bourre
  • Odile Dumont
  • Michèle Piciotti
  • Gérard Pascal
  • Georges Durand


It is necessary to ensure that brain cells receive adequate supplies, especially of lipids, during their differentiation and multiplication. A lipidic anomaly could result in altered function of the membranes and a greater susceptibility of the membranes to aggression, particularly toxic.


Linolenic Acid Polyunsaturated Fatty Acid Sciatic Nerve Essential Fatty Acid Linolenic Acid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.F. Mead, The non-eicosanoid functions of the essential fatty acids. J. Lipid Res. 25: 1517–1521 (1984).PubMedGoogle Scholar
  2. 2.
    R.T. Holman, Control of polyunsaturated acids in tissue lipids. J. Amer. Col. Nutr. 5: 183–211 (1986).Google Scholar
  3. 3.
    N.K. Menon, and G.A. Dhopeshwarkar, Essential fatty acid deficiency and brain development. Prog. Lipid Res. 21: 309–326, 1982.PubMedCrossRefGoogle Scholar
  4. 4.
    C. Alling, A. Bruce, I. Karlsson, 0. Sapia, and L. J. Svennerholm, Effect of maternal essential fatty acid supply on fatty acid composition of brain, liver, muscle and serum in 21-day-old rats. J. Nutr. 102: 773–782 (1971).Google Scholar
  5. 5.
    N. Bazan, S. Di Fazio De Escalante, M. Careaga, H.E.P. Bazan, and N.M. Giusto, High content of 22:6 (docosahexaenoate) and active (2–3H) glycerol metabolism of phosphatidic acid from photoreceptor membranes. Biochim. Biophys. Acta 712: 702–706 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    R.R. Brenner, Effect of unsaturated acids on membrane structure and enzyme kinetics. Prog. Lipid Res. 23: 69–96 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    M.T. Clandinin, J.E. Chappell, S. Leong, T. Heim, P.R. Swyer, and G.W. Chance, Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Human Development, 4 /2: 121–129 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    M.T.Clandinin, J.E. Chappell, S. Leong, T. Heim, P.R. Swyer, and G.W. Chance, Extrauterine fatty acid accretion in infant brain: implication for fatty acid requirements. Early Human Development 4 /2: 131–138 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    H.W.Cook, “In vitro” formation of polyunsaturated fatty acids by desaturation in rat brain : some properties of the enzyme in developing brain and comparison with liver. J. Neurochem. 30:1327–1334 (1978).Google Scholar
  10. 10.
    M.A. Crawford, and A.J. Sinclair, Nutritional influences in the evolution of mammalian brain. Ciba Foundation Symposium, Published by ASP (Elsevier. Excerpta Medical, North-Holland), Amsterdam. pp. 267–292 (1971).Google Scholar
  11. 11.
    M.A. Crawford, A.G. Hassam, and P.A. Stevens, Essential fatty acid requirements in pregnancy and lactation with special reference to brain development. Prog. Lipid Res. 20: 31–40 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    G.A. Dhopeshwarkar, and J.F. Mead, Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv. Lipid Res. 11: 109–142 (1973).PubMedGoogle Scholar
  13. 13.
    R.T. Holman, R.T. Essential fatty acid deficiency. In: progress in the Chemistry of Fats and Other Lipids. 9, Part. 2. pp. 279, ed. R.T. Holman. Pergamon Press, Oxford (England) (1968).Google Scholar
  14. 14.
    R.T.Holman, S.B. Johnson, and T.F. Hatch, A case of human linolenic acid deficiency involving neurological abnormalities. Am. J. Clin. Nutr. 35: 617–623 (1982).Google Scholar
  15. 15.
    R. Paoletti, and C. Galli, Effect of essential fatty acid deficiency on the central nervous system in the growing rat. In Lipid. Malnutrition and the Developing Brain. Ciba Foundation Symposium, pp. 121–140 (1972).Google Scholar
  16. 16.
    G.Y.Sun, and A.Y. Sun, Synaptosomal plasma membranes: acyl group composition of phosphogl.ycerides and (Na+ + K+)-ATPase activity during fatty acid deficiency. J. Neurochem. 22: 15–18 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    J.M. Bourre, G. Pascal, G. Durand, M. Masson, O. Dumont, and M. Piciotti, Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. J. Neurochem. 43: 342–348, (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    G.W.Goldstein, Relation of potassium transport to oxidative metabolism in isolated brain capillaries. J. Physio.l. 286: 185–195 (1979).Google Scholar
  19. 19.
    P. Homayoun, F. Roux, E. Niel, and J.M. Bourre, The synthesis of lipids from (1–14C) acetate by isolated rat brain capillaries. Neurosci. Lett. 62: 143–147 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    C. Weidner, The presence of an albino ERG in the pigmented rat: genetic implications. J. Physiol. 77: 813–821 (1981).Google Scholar
  21. 21.
    A. Nouvelot, J.M. Bourre, G. Sezille, P. Dewailly, and J. Jai..11ard, Changes in the fatty acid patterns of brain phospholipids during development of rats fed peanut or rapeseed oil, taking into account differences between milk and maternal food. Ann. Nutr. Metabol. 27: 233–241 (1983).CrossRefGoogle Scholar
  22. 22.
    A. Nouvelot, C. Delbart, and J.M. Bourre, Hepatic metabolism of dietary alpha-linolenic acid in suckling rats, and its posible importance in polyunsaturated fatty acid uptake by the brain. Ann. Nutr. Metab. 30: 316–323 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Youyou, G. Durand, G. Pascal, M. Piciotti, O. Dumont, and J.M. Bourre, Recovery of altered fatty acid composition induced by a diet devoid or n-3 fatty acids in myelin, synaptosomes, mitochondria and microsomes of developing rat brain. J. Neurochem. 46: 224–228 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    Strouve-Vallet and M. ascaud, Désaturation de l’acide linoléique par les microsomes du foie et du cerveau du rat en développement. Biochimie 53: 699–703 (1971).PubMedGoogle Scholar
  25. 25.
    P. Homayoun, G. Durand, G. Pascal., and J.M. Bourre, Alteration in fatty acid composition of adult rat brain capillaries and choroid plexus induced by a diet deficient in (n-3) fatty acids. Slow recovery by substitution with a non deficient diet. J. Neurochem. (in press).Google Scholar
  26. 26.
    J.M. Bourre, A. Youyou, G. Durand, and G. Pascal, Slow recovery of the fatty acid composition of sciatic nerve in rats fed a diet initially low in n-3 fatty acids. Lipids 22: 535–537 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Bernshohn, and F.J. Spitz, Linoleic and linolenic acid dependency of some brain membrane-bound enzymes after lipid deprivation in rats. Biochem. Biophys. Res. Com. 57: 293–298 (1974).CrossRefGoogle Scholar
  28. 28.
    M. Foot, T.F. Cruz, and M.T. Clandinin, Influence of dietary fat on the lipid composition of rat brain synaptosomal and microsomal membranes. Biochem. J. 208: 631–640 (1982).PubMedGoogle Scholar
  29. 29.
    J. Tinoco, P. Miljanich, and B. Medwadowski, Depletion of docosahexaenoic acid in retinal lipids of rats fed a linolenic acid-deficient, linoleic acid-containing diet. Biochim. Biophys. Acta 486: 575–578 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Neuringer, and W.E. Connor n-3 fatty acids in the brain and retina: evidence for their essentiality. Nutr. Rev. 44, 289 (1986).Google Scholar
  31. 31.
    W.M.F. Leat, R. Curtis, N. J. Millichamp, and R.W. Cox, Retinal function in rats and guinea-pigs. Reared on diets low in essential fatty acids and supplemented with linoleic or linolenic acids. Ann. N.tr. Metab. 30: 166–174 (1986).CrossRefGoogle Scholar
  32. 32.
    A. Nouvelot, E. Dedonder, Ph. Dewailly, and J.M. Bourre, Influence des n-3 exogènes sur la composition en acides gras polyinsaturés de la rétine. Aspects structural et physiologique. Cah. Nutr. Diét. XX, 2: 123–125 (1985).Google Scholar
  33. 33.
    J.A. Caldwell, and J.A. Churchill, Learning impairment in rats administered a lipid free diet during pregnancy. Psychol. Rep. 19: 99–102 (1966).PubMedCrossRefGoogle Scholar
  34. 34.
    M.S. Lamptey and B.L. Walker, Learning behaviour and brain lipid composition in rats subjected to essential fatty acid deficiency during gestation. Lactation and growth. J. Nutr. 108:358–3b7 (1978).Google Scholar
  35. 35.
    M. Lamptey and B.L. Walker, A possible essential role for dietary linolenic acid in the development of the young rat. J. Nutr. 106: 86–93 (1976).PubMedGoogle Scholar
  36. 36.
    J.M. Bourre, A. Faivre, 0. Dumont, A. Nouvelot, C. Loudes, J. Puymirat, and A. Tixier-Vidal, Effect of polyunsaturated fatty acids on fetal mouse brain cells in culture in a chemically defined medium. J. Neurochem. 41: 1234–1242 (1983).Google Scholar
  37. 37.
    C. Loudes, A. Faivre, A. Barret, D. Grouselle, J. Puymirat, and M. Tixier-Vidal, Release of immunoreactive TRH in serum free culture of mouse hypothalamic cells. Dev. Brain Res. 9: 231–234 (1983).CrossRefGoogle Scholar
  38. 38.
    J. Chaudière, M. Clément, F. Driss, and J.M. Bourre, Unaltered brain membranes after prolonged intake of highly oxidizable long-chain fatty acids of the (n-3) series. Neurosci. Lett. 82, 233–239 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    J.M. Bourre, M. Bonneil, 0. Dumont, M. Piciotti, G. Nalbone, and H. Lafont, High dietary fish oil alters the brain polyunsaturated fatty acid composition. BBA 960: 458–461 (1988).PubMedCrossRefGoogle Scholar
  40. 40.
    R.N.T.Fiennes, A.J. Sinclair, and M.A. Crawford, Essential fatty acid studies in primates linolenic acid requirements of capuchins. J. Med. Prim. 2: 155–169 (1973).Google Scholar
  41. 41.
    Anonymous, Combined EFA deficiency in a patient on long term TPN. Nutrition Reviews 44: 301–305 (1986).Google Scholar
  42. 42.
    K.S. Bjerne, I.L. Mostad, and L. Thoresen, Alpha-linolenic acid deficiency in patients on long term gastric tube feeding. estimation of linolenic acid and long-chain unsaturated n-3 fatty acid requirement in man. Scand. Am. J. Clin. Nutr. 45: 66–77 (1987).Google Scholar
  43. 43.
    K.S. Bjerve, S. Fisher, and K. Alme, Alpha-linolenic acid deficiency in man: effect of ethyl linolenate on plasma and erythrocyte fatty acid composition and biosynthesis of prostanoids. Am. J. Clin. Nutr. 46: 570–576 (1987).PubMedGoogle Scholar
  44. 44.
    D. Rudin, The dominant diseases of modernized societies as omega-3 essential fatty acid deficiency syndrome: substrate beriberi. Med. Hypotheses. 8: 17–47 (1982).PubMedCrossRefGoogle Scholar
  45. 45.
    C. Pudelkewicz, J. Seufert, and R.T. Holman, Requirements of the female rat for linoleic and linolenic acids. J. Nutr. 94, 138–146 (1968).PubMedGoogle Scholar
  46. 46.
    M. Lasserre, F. Mendy, D. Spielmann, and B. Jacotot, Effects of different dietary intake of essential fatty acids on C20:3 w6 and C20:4 w6 serum levels in human adult. Lipids 4: 227–233 (1985).CrossRefGoogle Scholar
  47. 47.
    J.E. Kinsella, Food components with potential therapeutic benefits: the n-3 polyunsaturated fatty acids of fish oils. Food Technology pp. 89–97 (1986).Google Scholar
  48. 48.
    J.M. Bourre, Origin of aliphatic chains in brain. Dans “Neurological Mutations Affecting Myelination” (N. Baumann ed.) INSERM Symposium n°14. Elsevier/North Holland Biomedical Press pp. 187–206 (1980).Google Scholar
  49. 49.
    J.M. Bourre, G. Durand, G. Pascal, and A. Youyou, Recovery of altered polyunsaturated fatty acid composition induced by a diet deficient in n-3 fatty acids in brain cells (neurons, astrocytes and oligodendrocytes). Comparison with other organs. J. Nutr. (accepted).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jean-Marie Bourre
    • 1
  • Odile Dumont
    • 1
  • Michèle Piciotti
    • 1
  • Gérard Pascal
    • 2
  • Georges Durand
    • 2
  1. 1.Hôpital Fernand WidalINSERM Unité 26Paris Cedex 10France
  2. 2.INRA-CNRZJouy-en-JosasFrance

Personalised recommendations