Advertisement

Early Studies on the Biosynthesis of Polyunsaturated Fatty Acids

  • Konrad Bloch

Abstract

The synthesis of olefinic fatty acids, whether mono-, di-, or polyunsaturated, begins in all eukaryotic cells with the aerobic desaturation of stearate to oleate and more rarely with the conversion of palmitate to palmitoleate. Andreasen and Stier, the first investigators to implicate molecular oxygen in this 9,10 hydrogen abstraction process observed in 1952 that oleate becomes an essential nutrient for yeast growing under strictly anaerobic conditions (1). The evidence available today points to a similar obligatory role of oxygen for all subsequent desaturation steps. The detailed reaction mechanisms responsible for the very earliest events in the desaturation chain may therefore be of some relevance to the steps that follow.

Keywords

Fatty Acid Synthesis Euglena Gracilis Hill Reaction Detailed Reaction Mechanism Mixed Function Oxygenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Andreasen, and T. J. B. Stier, J. Cell Comp. Physiol. 41: 23 (1954).CrossRefGoogle Scholar
  2. 2.
    D. Bloomfield, and K. Bloch, J. Biol. Chem. 235: 337 (1960).PubMedGoogle Scholar
  3. 3.
    P. Strittmatter, M. J. Rogers, and L. Spatz, J. Biol. Chem. 247: 7188 (1972).PubMedGoogle Scholar
  4. 4.
    J. Nagai, and K. Bloch, J. Biol. Chem. 241: 1925 (1965).Google Scholar
  5. 5.
    J. Nagai, and K. Bloch, J. Biol. Chem. 242: 357 (1967).PubMedGoogle Scholar
  6. 6.
    P. Overath, and P. Stumpf, J. Biol. Chem. 239: 4103 (1964).PubMedGoogle Scholar
  7. 7.
    C. Yuan, and K. Bloch, J. Biol. Chem. 236: 1277 (1961).PubMedGoogle Scholar
  8. 8.
    B. Talamo, N. Chang, and K. Bloch, J. Biol. Chem. 248: 2738 (1973).PubMedGoogle Scholar
  9. 9.
    M. L. Gurr, M. P. Robinson, and A. T. James, Eur. J. Biochem. 9: 70 (1969).PubMedCrossRefGoogle Scholar
  10. 10.
    P. S. Sastry, and M. Kates, Can. J. Biochem. 44: 459 (1966).PubMedCrossRefGoogle Scholar
  11. 11.
    Renkonen, and K. Bloch, J. Biol. Chem. 244: 4899 (1969).Google Scholar
  12. 12.
    M. Boudreau, P. Chanmugam, and D. H. Hwang, Fed. Proc. 46 (4): 1169 (1987).Google Scholar
  13. 13.
    J. Erwin, and K. Bloch, Science 143: 1006 (1964).PubMedCrossRefGoogle Scholar
  14. 14.
    D. Hulanicka, J. Erwin, and K. Bloch, J. Biol. Chem. 239: 2778 (1964).PubMedGoogle Scholar
  15. 15.
    J. J. Wolken, Euglena, an Experimental Organism for Biochemical and Biophysical Studies, p. 5, Rutgers University Press (1961).Google Scholar
  16. 16.
    F. Davidoff, and E. D. Korn, J. Biol. Chem. 238: 3199 (1963).PubMedGoogle Scholar
  17. 17.
    J. Erwin, and K. Bloch, Biochem. Ztschr. 338: 495 (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Konrad Bloch
    • 1
  1. 1.Department of ChemistryHarvard UniversityCambridgeUSA

Personalised recommendations