Skip to main content

Renal Proton Nuclear Magnetic Resonance in Gentamicin, Cyclosporin a and Cisplatinum Acute Renal Failure in Rats

  • Chapter
Nephrotoxicity
  • 17 Accesses

Abstract

Several studies suggest that it is possible to evaluate renal pathology by magnetic resonance imaging due to the sensitivity of the method in differentiating normal from pathological renal tissue (1–9). Proton magnetic resonance measurements are based on the properties of hydrogen nuclei that have spin. When placed in a magnetic field they orient themselves in the direction of the field. By application of a radio frequency pulse of suitable frequency, the direction of the spinning axis may be modified. After the pulse, the protons return to their original orientation emitting measurable signals. These signals grow and decay according to characteristic relaxation times; T1 “spin-lattice” (longitudinal) and T2 “spin-spin” (transverse) relaxation times. T1 reflects the interaction of the hydrogen nucleus with its molecular environment, whereas T2 reflects magnetic interactions between protons (10–12). In vitro magnetic resonance spectroscopy offers a direct measurement of different normal and abnormal tissues magnetic resonance properties (10–17). Using in vitro proton magnetic resonance measurements we demonstrated different profiles of relaxation times in different forms of experimental acute and chronic renal failure in rats (14,15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Steiner, The Hammersmith clinical experience with nuclear magnetic resonance, Clinical Radiology. 34:13 (1983).

    Article  PubMed  CAS  Google Scholar 

  2. H. Hricak, L. Crooks, P. Sheldon and L. Kaufman, Nuclear magnetic resonance imaging of the kidney, Radiology. 146:425 (1983).

    PubMed  CAS  Google Scholar 

  3. H. Hricak and J.F. Newhouse, Magnetic resonance imaging of the kidney, Radiol. Clin. North Am. 22:287 (1984).

    PubMed  CAS  Google Scholar 

  4. F.W. Smith, A. Reid, J.R. Mallard, J.M.S. Hutchinson, D.A. Pover, and G.R.D. Cato, Nuclear magnetic resonance tomographic imaging in renal disease, Diagnostic Imaging, 51:209 (1982).

    PubMed  CAS  Google Scholar 

  5. L.J. Schultze, L. Te Strake, L.C. Paul, A.M. Tegzess, J.L. Bloem, J. Doornbos and R.G. Bluemm, Magnetic resonance imaging in renal transplants, In: “Proceedings EDTA-ERA” A.M. Davison and P.J. Guillou eds. Bailliere Tindal, London, pp 609–613 (1985).

    Google Scholar 

  6. I.R. Young, D.R. Bailes, M. Burl, A.G. Collins, D.T. Smith, M.J. MacDonald, J.S. Orr, L.M. Banks, G.M. Bydder, R.M. Greenspan and R.E. Steiner, Initial clinical evaluation of a whole body nuclear magnetic resonance (NMR) tomograph, J. Comput. Assist. Tomog. 6:1 (1982).

    Article  CAS  Google Scholar 

  7. F. Terrier, H. Hricak, D. Revel, C. Alpers, P. Bretan and N.J. Feduska, Magnetic resonance imaging in the diagnosis of acute allograft rejection and its differentiation from acute tubular necrosis necrosis; experimental study in the dog, Invest. Radiol. 20:617 (1985).

    Article  PubMed  CAS  Google Scholar 

  8. H. Hricak, F. Terrier and B. Demas, Renal allografts: evaluation by MR imaging, Radiology. 159:435 (1986).

    PubMed  CAS  Google Scholar 

  9. H. Hricak, F. Terrier, M. Marotti, B.L. Engelstad, R.A. Filly, F. Vincenti, R.M. Duca, P.N. Bretan, C.B. Higgins and N. Feduska, Posttransplant renal rejection: comparison of quantitative scintigraphy, US and MR imaging, Radiology., 162:685 (1987).

    PubMed  CAS  Google Scholar 

  10. P.T. Beall, D. Medina and C.F. Hazelwood, The “systemic effect” of elevated tissue and serum relaxation times for water in animals and humans with cancer, In: “NMR medicine”, R. Damadian R, ed., Springer Verlag, New York, pp 39–57 (1981).

    Chapter  Google Scholar 

  11. I.L. Cameron, V.A. Ord and G.D. Fullerton, Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters, Magnetic Resonance Imaging, 2:97 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. G.D. Fullerton, J.L. Potter and N.C. Dornbluth, NMR relaxation of protons in tissues and other macromolecular water solutions, Magnetic Resonance Imaging, 1:209 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. Z.H. Endre and P.W. Küchel PW, Proton NMR spectroscopy of rabbit renal cortex, Kidney Int. 28:6 (1985).

    Article  PubMed  CAS  Google Scholar 

  14. A. Iaina, S. Abrashkin and J. Weininger, Proton MR study of different types of experimental acute renal failure in rats, Magnetic Resonance Imaging, 4:241 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. S. Abrashkin, J. Weininger, L. Griffel, R. Schneider and A. Iaina, Proton magnetic resonance in experimental acute and chronic renal failure in rats, Renal Failure. 10:21 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. D. London, P. Davis, R. Williams, L. Crooks, P. Sheldon P and C. Gooding, Nuclear magnetic resonance imaging of induced renal lesions, Radiology. 148;167 (1983).

    PubMed  CAS  Google Scholar 

  17. Y. Yuasa and H.L. Kundel, Magnetic resonance imaging following unilateral occlusion of the renal circulation in rabbits, Radiology. 154:151 (1985).

    PubMed  CAS  Google Scholar 

  18. G.N. Ling, Hydration of macromolecules, In: “Water and aqueous solutions: Structure, thermodynamics and transport processes”, R. Home, ed., pp 663–670, Wiley Interscience, New York (1972).

    Google Scholar 

  19. R.K. Outhred and E.P. George, A nuclear magnetic resonance study of hydrated systems using the frequency dependence of the relaxation process, Biophys. J. 13:83 (1973).

    Article  PubMed  CAS  Google Scholar 

  20. W.R. Inch, J.A. McCredie, C. Geiger and Y. Boctor, Spin-lattice relaxation times for mixtures of water and gelatin or cotton, compared with normal and malignant tissue, J. Nat. Cane. Inst. 53:689 (1974).

    CAS  Google Scholar 

  21. W.R. Inch, J.A. McCredie, R.R. Knispel, R.I. Thompson and M.M. Pintar, Water content and proton spin relaxation time for neoplastic and nonneoplastic tissues from mice and humans, J. Nat. Cane. Inst. 52:353 (1974).

    CAS  Google Scholar 

  22. H.J.C. Berendsen, Specific interactions of water with biopolymers, In: “Water a comprehensive treatise, Vol 5, Water in disperse systems”, F. Franks, ed. Plenum Press, New York, pp 293–330 (1975).

    Google Scholar 

  23. CF. Hazelwood, A view of the significance and understanding of the physical properties of cell-associated water, In: “Cell Associated Water”, J. Clegg and W. Drost-Hanson, eds. Academic Press, New York, pp 165–259 (1979).

    Google Scholar 

  24. R. Mathur-De Vre, The NMR studies of water in biological systems, Prog. Biophys. Biol. 35:103 (1979).

    Article  Google Scholar 

  25. K.R. Porter and J.B. Tucker, The ground substance of the living cell, Sci. Am. 244:56 (1981).

    Article  PubMed  CAS  Google Scholar 

  26. A. Iaina, D. Herzog, D. Cohen, S. Gavendo, S. Kapuler, I. Serban, G. Schiby and H.E. Eliahou, Calcium entry blockade with verapamil in cyclosporine A plus ischemia induced acute renal failure in rats, Clinical Nephrol. 25 (suppl 1):168 (1986).

    Google Scholar 

  27. B.D. Kaha, Cyclosporine nephrotoxicity: pathogenesis, prophylaxis, therapy and prognosis, Am. J. Kidney. Dis. 8:323 (1986).

    Google Scholar 

  28. J.M. Weinberg, The role of calcium overload in nephrotoxic renal tubular cell injury, Am. J. Kidney Dis. 8:284 (1986).

    PubMed  CAS  Google Scholar 

  29. R. Safirstein, J. Winston, M. Goldstein, P. Moel, S. Pickman and J. Guttenplan, Cisplatin nephrotoxicity, Am. J. Kidney Dis. 8:356 (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iaina, A., Abrashkin, S., Weininger, J., Azoury, R. (1989). Renal Proton Nuclear Magnetic Resonance in Gentamicin, Cyclosporin a and Cisplatinum Acute Renal Failure in Rats. In: Bach, P.H., Lock, E.A. (eds) Nephrotoxicity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2040-2_77

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2040-2_77

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2042-6

  • Online ISBN: 978-1-4757-2040-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics