Predicting the Kidney Burden of Toxic Metals

  • Gary L. Diamond
  • Thomas W. Clarkson
  • John B. Hursh
  • M. George Cherian


The accurate assessment of risk associated with exposures to nephrotoxic metals demands an explicit understanding of relationships between level of exposure, the resulting dose to the kidney and effects on kidney function. Development of methods for directly measuring or predicting kidney burden of metals in humans is a central component of this problem. Experiments in laboratory animals allow a rigorous exploration of the biokinetics of metals in kidney and can lead to development of models relating level of exposure to kidney metal burden, and the latter to other biological indices of kidney burden (e.g. Urinary metal) and nephrotoxicity (e.g, proteinuria). However, extrapolation of these models to humans can not be made with certainty, unless they can be validated with quantitative assessments in humans. Methods for in vivo measurement or estimation of metals in kidney can be used to test models that are based on laboratory animal data, and thus, potentially, can lead to a greatly improved understanding of exposure-effect relationships for nephrotoxic metals in humans.


Isotope Dilution Inorganic Mercury Outer Medulla Renal Uptake Isotope Dilution Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Chettle and J.H. Fremlin, Techniques for in vivo neutron activation analysis, Phys. Med. Biol. 29: 1011–1042 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    S.H. Cohn and R.M. Parr, Nuclear-based techniques for the in vivo study of human composition, Clin. Phys. Physiol. Meas. 6:275–301 (1985),PubMedCrossRefGoogle Scholar
  3. 3.
    L. Wielopolski, K.J. Ellis, A.N. Vaswani, S.H. Cohn, A. Greenberg, J.B. Puschett, D.K. Parkinson, D.E. Fetterolf and P.J. Landrigan, In vivo bone lead measurements: A rapid monitoring method for cumulative lead exposure, Am. J. Ind. Med. 9:221–226 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    K.J. Ellis and S.P. Kelleher, In vivo bone aluminum measurement in patients with renal disease, In: “In Vivo Body Composition Studies,” K.J. Ellis, S. Yasamura, and W.D. Morgan, eds., Institute of Physical Science and Medicine, London (1987).Google Scholar
  5. 5.
    H.A. Roels, R.R. Lauwerys, J. Buchet, A. Bernard, D.R. Chettle, T.C. Harvey and I.K. Al-Haddad: In vivo measurement of liver and kidney cadmium in workers exposed to this metal: Its significance with respect to cadmium in blood and urine, Environ. Res. 26:217–240 (1986).CrossRefGoogle Scholar
  6. 6.
    K.J. Ellis, W.D. Morgan, I. Zanzi, S. Yasumura, D. Vartsky and S.H. Cohn, Critical concentrations of cadmium in human renal cortex: Dose-effect studies in cadmium smelter workers, J. Toxicol. Environ. Health 7: 691–703 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    K.J. Ellis and S.H. Cohn, Cadmium inhalation exposure estimates: Their significance with respect to kidney and liver cadmium burden, J. Toxicol. Environ. Health 15: 173–187 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    J.R.H. Smith, S.S. Athwal, D.R. Chettle and M.C. Scott, On the in vivo measurement of mercury using neutron capture and X-ray fluorescence, Int. J. Appl. Rad. Isotop. 33:557–651 (1982).CrossRefGoogle Scholar
  9. 9.
    K.J. Ellis, D. Vartsky and S.H. Cohn, In vivo monitoring of metals in man: Cadmium and mercury, Neurotoxicology 4: 164–168 (1983).PubMedGoogle Scholar
  10. 10.
    J.B. Hursh, T.W. Clarkson, T.V. Nowak, R.C. Pabico, B.A. McKenna, E. Miles and F.R. Gibb, Prediction of kidney mercury content by isotope techniques, Kidney Int. 27: 898–907 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Rothstein and A.D. Hayes, The metabolism of mercury in the rat studied by isotope techniques, J. Pharmacol. Exp. Ther. 130: 166–176 (1960).Google Scholar
  12. 12.
    M. Berlin, J. Fazacherley and G. Nordberg, The uptake of mercury in the brains of mamlnals exposed to mercury vapor and to mercuric salts, Arch. Environ. Health 18:719–729 (1969).PubMedGoogle Scholar
  13. 13.
    J.B. Hursh, M.R. Greenwood, T.W. Clarkson, J. Allen and S. Demuth, The effect of ethanol on the fate of mercury inhaled by man, J. Pharmacol. Exp. Ther. 214: 420–427 (1980).Google Scholar
  14. 14.
    T.W. Clarkson and L. Magos, Effect of 2, 4-dinitrophenol and other metabolic inhibitors on the renal disposition and excretion of mercury, Biochem. Pharmacol. 19:3029–3037 (1970).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Magos and T.W. Clarkson, Atomic absorption determination of total, inorganic and organic mercury in blood, J. Assoc. Off. Anal Chem. 55: 966–971 (1972).PubMedGoogle Scholar
  16. 16.
    H. Satoh, J.B. Hursh and T.W. Clarkson, Selective determinations of elemental mercury in blood and urine exposed to mercury vapor in vitro, Appl. Toxicol. 1: 177–181 (1968).Google Scholar
  17. 17.
    G.L. Diamond and A.J. Quebbemann, In vivo quantification of renal sulfate and glucuronide conjugation in the chicken, Drug Metab. Dispos. 9: 402–409 (1981).PubMedGoogle Scholar
  18. 18.
    M.G. Cherian, J.B. Hursh, T.W. Clarkson and J. Allen, Radioactive mercury distribution in biological fluids and excretion in human subjects after inhalation of mercury vapor, Arch. Environ. Health 33: 109–114 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Berlin and S. Gibson, Renal uptake, retention and excretion of mercury, Arch. Environ. Health 6: 617–625 (1963).PubMedGoogle Scholar
  20. 20.
    M. Cirkrt and J. Heller, Renal tubular handling of 203Hg++ in the dog: A microinjection study, Environ. Res. 21:308–313 (1980).CrossRefGoogle Scholar
  21. 21.
    M. Berlin, Dose-response relationships and diagnostic indices of mercury and mercurials, In: Effects and Dose-Response Relationships of Toxic Metals, G.G. Nordberg, ed., Elsevier Scientific Publishing Co., Amsterdam (1976).Google Scholar
  22. 22.
    J.J. Chisolm, Poisoning due to heavy metals, Pediatr. Clin. North Am. 17:591–615 (1970).PubMedGoogle Scholar
  23. 23.
    H.V. Aposhian, DMSA and DMPS-water soluble antidotes for heavy metal poisoning, Ann. Rev. Pharmacol. Toxicol. 23:193–2215 (1983).CrossRefGoogle Scholar
  24. 24.
    T. Twarog and M.G. Cherian, Chelation of load by dimercaptopropane sulfonate and a possible diagnostic use, Toxicol. Appl. Pharmacol. 72:550–556 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    T.W. Clarkson, L. Magos, C. Cox, M.R. Greenwood, L. Amin-Zaki, M.A. Majeed and S.F. Al-Damluji, Tests of efficacy of antidotes for removal of methylmercury in human poisoning during the Iraqui outbreak, J. Pharmacol. Exp. There 218:74–83 (1981).Google Scholar
  26. 26.
    J.J. Chisolm and D.J. Thomas, Use of 2,3-dimercaptopropane-1-sulfonate in treatment of lead poisoning in children, J. Pharmacol. Exp. Ther. 235: 605–624 (1985).Google Scholar
  27. 27.
    B. Gabard, The excretion and distribution of inorganic mercury in the rat as influenced by several chelating agents, Arch. Toxicol. 35:15–24 (1978).CrossRefGoogle Scholar
  28. 28.
    B. Gabard, Treatment of methylmercury poisoning in the rat with sodium 2, 3-dimercaptopropane-1-sulfonate, Toxicol. Appl. Pharmacol. 38: 416–424 (1976).CrossRefGoogle Scholar
  29. 29.
    F. Planas-Bohne, The effect of 2, 3-dimercaptopropane-1-sulfonate and dimercaptosuccinic acid on the distribution and excretion of mercuric chloride in rats, Toxicol. 19:275–278 (1981).CrossRefGoogle Scholar
  30. 30.
    J.R. Stewart and G.L. Diamond, Renal tubular secretion of the alkanesulfonate 2, 3-dimercapto-1-propanesulfonate, Am. J. Physiol. 252:F800-F810 (1987).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Gary L. Diamond
    • 1
  • Thomas W. Clarkson
    • 1
  • John B. Hursh
    • 1
  • M. George Cherian
    • 1
    • 2
  1. 1.Environmental Health Science CenterUniversity of Rochester RochesterNew YorkUSA
  2. 2.Department of Pathology, Pharmacology and ToxicologyUniversity of Western OntarioLondonCanada

Personalised recommendations