Structure-Function Relationships of The Gtp-Binding Domain of Elongation Factor Tu

  • Pieter H. Anborgh
  • Robbert H. Cool
  • Eric Jacquet
  • Michael Jensen
  • Giuseppe Parlato
  • Andrea Parmeggiani


Elongation factor Tu (EF-Tu) is a multifunctional enzyme, essential for protein synthesis in which it acts as the carrier of aa-tRNA to the ribosome-mRNA complex (Miller & Weissbach, 1977; Bosch et al., 1983; Parmeggiani & Swart, 1985). EF-Tu belongs to the class of guanine nucleotide-binding proteins which in recent years have been found to play a crucial role in controlling the transmission of information in fundamental processes of the eucaryotic and procaryotic cell, such as growth, hormone response, neurotransmission, membrane transport and protein synthesis (for refs: Masters et al., 1986; Dever et al., 1987; Gilman, 1987; Barbacid, 1987). In pathological processes guanine nucleotide binding proteins are involved in the oncogenic transformation of the human cell (Scolnick et al., 1979) and are encoded by the HIV retrovirus (Guy et al., 1987). In all of these proteins, the active form needed for the interaction with the various ligands, is the complex with GTP; their intrinsic GTPase activity cleaving the y-phosphate is therefore determinant for controlling their activity. The primary structure of this class of proteins shows a pronounced homology which in most cases affects the first 150–180 N-terminal amino acid residues. Functional, immunological and structural studies, and comparison with nucleotide binding proteins have led to the identification within these homologies of a consensus sequence involved in the binding of the substrate GTP/GDP (McCormick et al., 1985; Dever et al., 1987).


Guanine Nucleotide Binding Protein Point Substitution Intrinsic GTPase Activity Molecular Weight Difference Protein Synthesis Initiation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbacid, M., 1987, ras Genes, Ann. Rev. Biochem. 56:779–827CrossRefGoogle Scholar
  2. Bosch, L., Kraal, B., van der Meide, P., Duisterwinkel, F.J., and van Noort, J. M., 1983, The elongation factor EF-Tu and its two encoding genes, Prog. Nucleic Acid Res. Mol. Biol, 21:91–126CrossRefGoogle Scholar
  3. Cenatiempo, Y., Deville, F., Dondon, J., Grunberg-Manago, M., Sacerdot, C., Hershey, J. W. B., Hansen, H. F., Petersen, H. J. U., Clark, B. F. C., Kjeldgaard, M., la Cour, T. F. M., Mortensen, K. K., and Nyborg, J., 1987, The protein synthesis initiation factor 2 G domain. Study of a functionally active C-terminal 65-kilodalton fragment of IF-2 from E. coli, Biochemistry, 26:5070–5076PubMedCrossRefGoogle Scholar
  4. Dente, L., Cesareni, G., and Cortese, R., 1983, pEMBL: a new family of single stranded plasmids, Nucleic Acids Res., 11:1645–165PubMedCrossRefGoogle Scholar
  5. Dever, T. E., Glynias, M. J., and Merrick, W. C., 1987, GTP-binding domain: Three consensus sequence elements with distinct spacing, Proc. Natl. Acad. Sci. USA, 84:1814–1818PubMedCrossRefGoogle Scholar
  6. Duisterwinkel, F. J., Kraal, B., De Graaf, J. M., Talens, A., Bosch, L., Swart, G. W. M., Parmeggiani, A., la Cour, T. F. M., Nyborg J., and Clark, B. F. C., 1984, Specific alterations of the EF-Tu polypeptide chain considered in the light of its three-dimensional structure, EMBO J., 3:113–120PubMedGoogle Scholar
  7. de Vos, A. M., Tong, L., Milburn, M. V., Matías, P. M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E., and Kim, S.-H., 1988, Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21, Science, 239:888–893PubMedCrossRefGoogle Scholar
  8. Fasano, O., Bruns, W., Crechet, J. B., Sander, G., and Parmeggiani, A., 1978, Modification of elongation factor Tu-Guanine nucleotide interaction by kirromycin: a comparison with the effect of aminolacyl-tRNA and elongation factor Ts, Eur. J. Biochem., 89:557–565PubMedCrossRefGoogle Scholar
  9. Gilman, A. G., 1987, G proteins: Transducers of receptor-generated signals, Ann. Rev. Biochem., 56:615–649PubMedCrossRefGoogle Scholar
  10. Kramer, W., Shughart, K., and Fritz, H.-J., 1982, Directed mutagenesis of DNA cloned in filamentous phage: influence of hemimethylated GATC sites on marker recovery from restriction fragments, Nucleic Acid Res., 10:6475–6485PubMedCrossRefGoogle Scholar
  11. Kunkel, T. A., 1985, Rapid and efficient site-specific-mutagenesis without phenotypic selection, Proc. Natl. Acad. Sci. USA, 82:488–492PubMedCrossRefGoogle Scholar
  12. Guy, B., Kieny, M. P., Riviere, Y., le Peuch, C., Dott, K., Girard, M., Montagnier, L., and Lecocq, J.-P., 1987, HIV F/3′ orf encodes a phosphorylated GTP-binding protein resembling an oncogene product, Nature 330:266–269PubMedCrossRefGoogle Scholar
  13. Hingorani, V.N., and Ho, Y.K., 1987, A structural model for the a-subunit of transducin, FEBS Lett., 220:15–21PubMedCrossRefGoogle Scholar
  14. Jacquet, E., and Parmeggiani, A., 1988, Structure-function relationships in the GTP-binding domain of EF-Tu: mutation of Val20, the residue homologous to position 12 in p21, EMBO J., in printGoogle Scholar
  15. Ivell, R., Sander, G. and Parmeggiani, A., 1981, Modulation by monovalent and divalent cations of the guanosine-5′-triphosphatase activity dependent on elongation factor Tu, Biochemistry, 20:6852–6859PubMedCrossRefGoogle Scholar
  16. Jurnak, F., 1985, Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins, Science, 230:32–36PubMedCrossRefGoogle Scholar
  17. la Cour, T. F. M., Nyborg, J., Thirup, S., and Clark, B. F. C., 1985, Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography, EMBO J., 4:2385–2388PubMedGoogle Scholar
  18. Masters, S., Stroud, R. M., and Bourne, H. R., 1986, Family of G protein a chains: amphipathic analysis and predicted structure of functional domains, Protein Engineering 1:47–54PubMedGoogle Scholar
  19. McCormick, F., Clark, B. F. C., la Cour, T. F. M., Kjeldgaard, M., Norskov-Lauritsen, L., and Nyborg, J., 1985, A model for the tertiary structure of p21, the product of the ras oncogene, Science 230:70–82CrossRefGoogle Scholar
  20. Miller, D. L., and Weissbach, H., 1977, Factors involved in the transfer of aminoacyl-tRNA to the ribosomes, in: “Molecular mechanisms in protein biosynthesis”, Weissbach, H. and Pestka, S. (eds), Academic Press, New YorkGoogle Scholar
  21. Parmeggiani, A. and Swart, G. W. M., 1985, Mechanism of action of kirromycin-like antibiotics, Ann. Rev. Microbiol., 39:557–577CrossRefGoogle Scholar
  22. Parmeggiani, A., Swart, G. W. M., Mortensen, K. K., Jensen, M., Clark, B. F. C., Dente, L., and Cortese, R., 1987, Properties of a genetically engineered G-domain of elongation factor Tu, Proc. Natl. Acad. Sci. USA, 84:3141–3145PubMedCrossRefGoogle Scholar
  23. Remaut, E., Tsao, H., and Fiers, W., 1983, Improved plasmid vectors with a thermoinducible expression and temperature-regulated runaway replication, Gene, 22:103–112PubMedCrossRefGoogle Scholar
  24. Satoh, T., Nakamura, S., Nakafuku, M., and Kaziro, Y., 1988, Studies on ras proteins. Catalytic properties of normal and activated ras proteins purified in the absence of protein denaturants. Biochim. Biophys. Acta, 949:97–109PubMedCrossRefGoogle Scholar
  25. Scolnick, E. M., Papageorge, A. G., and Shih, T. Y., 1979, Guanine nucleotide binding activity as an assay for src protein of rat-derived murine sarcome virus, Proc. Natl. Acad. Sci. USA, 76:5335–5339CrossRefGoogle Scholar
  26. Seeburg, P. H., Colby, W. W., Capon, D. J., Goeddel, D. V., and Levinson, A. D., 1984, Biological properties of human c-Ha-ras1 genes mutated at codon 12, Nature (London), 312:71–75CrossRefGoogle Scholar
  27. Stark, M.J.R., 1987, Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in E. coli, Gene, 51:255–267Google Scholar
  28. Swart, G. W. M., Parmeggiani, A., Kraal, B., and Bosch, L., 1987, Effects of the mutation Gly-222→Asp on the functions of elongation factor Tu, Biochemistry, 26:2047–2054PubMedCrossRefGoogle Scholar
  29. Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., Dhar, R., Lowy, D. R., and Chang, E.H., 1982, Mecanism of activation of a human oncogene, Nature (London), 300:143–149CrossRefGoogle Scholar
  30. Trahey, M., Milley, R. J., Cole, G. E., Innis M., Paterson, H., Marshall, C. J., Hall, A., and McCormick, F., 1987, Biochemical and biological properties of the human N-ras p21 protein, Mol. Cell. Biol., 7: 541–544PubMedGoogle Scholar
  31. Taparowsky, E., Suard, Y., Fasano, O., Shimizu, K., Goldfarb, M., and Wigier, M., 1982, Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change, Nature (London), 300:762–765CrossRefGoogle Scholar
  32. van der Meide, P. H., Vijgenboom, E., Dicke, M., and Bosch, L., 1982, Regulation of the expression of tufA and tuß, the two genes coding for the elongation factor EF-Tu in E. coli, FEBS Lett., 139:325–330PubMedCrossRefGoogle Scholar
  33. van der Meide, P. H., Kastelein, R. A., Vijgenboom, E., and Bosch, L., 1983, tuf gene dosage effects on the intracellular concentration of EF-TuB, Eur. J. Blochem., 130:409–417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Pieter H. Anborgh
    • 1
  • Robbert H. Cool
    • 1
  • Eric Jacquet
    • 1
  • Michael Jensen
    • 2
  • Giuseppe Parlato
    • 3
  • Andrea Parmeggiani
    • 1
  1. 1.Laboratoire de Biochimie, Ecole PolytechniqueLaboratoire Associé du C.N.R.S. n° 240Palaiseau CedexFrance
  2. 2.Division of Biostructural ChemistryAarhus UniversityAarhusDenmark
  3. 3.Istituto di Biochimica Fisica e Patologia Molecolare e CellulareFacoltà di Medicina e ChirugiaCatanzaroItaly

Personalised recommendations