Advertisement

Identification of Functional Domains in G Protein α Chains

  • Susan B. Masters
  • R. Tyler Miller
  • Kathleen A. Sullivan
  • Henry R. Bourne

Abstract

In many signaling pathways, G proteins transduce extracellular signals (hormones or sensory stimuli), detected by receptors on the surface of cells, into regulation of effector proteins that control accumulation of intracellular second messengers (for recent reviews, see Stryer and Bourne, 1986; Gilman, 1987). The G proteins are a highly conserved family of heterotrimeric guanine nucleotide binding proteins. The a subunit, the key component of the G proteins, binds and hydrolyzes guanine nucleotides and interacts with ßγ subunits and specific sets of receptor and effector proteins. Signal transduction by the G proteins is driven by a cycle of GTP-dependent conformational changes in the a chain. This guanine nucleotide-dependent molecular machinery is conserved within and beyond the G protein family.

Keywords

Adenylate Cyclase Adenylyl Cyclase Guanine Nucleotide Pertussis Toxin GTPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbacid, M., 1987, ras Genes,Ann. Rev. Biochem., 56:779.PubMedCrossRefGoogle Scholar
  2. Bourne, H. R., Kaslow, D., Kaslow, H. R., Salomon, M., and Licko, V., 1981, Hormone sensitive adenylate cyclase: Mutant phenotype with normally regulated beta-adrenergic receptors uncoupled from catalytic adenylate cyclase, Mol. Pharmacol. 20:435.PubMedGoogle Scholar
  3. Cassel, D., Eckstein, F., Lowe, M., and Selinger, Z., 1979, Determination of the turn-off reaction for the hormone-activated adenylate cyclase, T. Biol. Chem., 254:9835Google Scholar
  4. de Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Miura, K., Ohtsuka, E., Noguchi, S., Nishimura, S., and Kim, S.-H., 1988, Three-dimensional structure of an oncogene protein: Catalytic domain of human c-H-ras p21, Science 239:888.PubMedCrossRefGoogle Scholar
  5. Fung, B. K.-K., and Nash, C. R., 1983, Characterization of transducin from bovine retinal rod outer segments, T. Biol. Chem. 258:10503.Google Scholar
  6. Gilman, A. G., 1987, G Proteins: Transducers of receptor-generated signals,Ann. Rev. Biochem. 56:615.PubMedCrossRefGoogle Scholar
  7. Haga, T., Ross, E. M., Anderson, H. J., and Gilman, A. G., 1977, Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 mouse lymphoma cells, Proc. Natl. Acad. Sci. USA 74:2016.PubMedCrossRefGoogle Scholar
  8. Halliday, K., 1984, Regional homology in GTP-binding proto-oncogene products and elongation factors, T. Cyclic Nucl. Res. 9:435–448.Google Scholar
  9. Higashijima, T., Ferguson, K. M., Sternweis, P. C., Ross, E. M., Smigel, M. D., and Gilman, A. G., 1987a, The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins, T. Biol. Chem. 262:752.Google Scholar
  10. Higashijima, T., Ferguson, K. M., Smigel, M. D., and Gilman, A. G., 1987b, The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go, T. Biol. Chem. 262:757.Google Scholar
  11. Hurley, J. B., Simon, M. L, Teplow, D. B., Robishaw, J. D., and Gilman, A. G., 1984, Homologies between signal transducing G proteins and ras gene products, Science 226:860.PubMedCrossRefGoogle Scholar
  12. Jurnak, F, 1985, Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins, Science 230:32.PubMedCrossRefGoogle Scholar
  13. Kanaho, Y., Tsai, S. C., Adamik, R., Hewlett, E. L., Moss, J., and Vaughan, M., 1984, Rhodopsin-enhanced GTPase activity of the inhibitory GTP-binding protein of adenylate cyclase, T. Biol. Chem. 259:7378.Google Scholar
  14. La Cour, T. F. M., Nyborg, J., Thirup, S., and Clark, B. F. C., 1985, Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography, EMBO T. 4:2385.Google Scholar
  15. Laursen, R. A., LTtalien, J. J., Nagarkatti, S., and Miller, D. L., 1981, The amino acid sequence of elongation factor Tu of Escherichia coli. The complete sequence, J. Biol. Chem. 256:8102.PubMedGoogle Scholar
  16. Masters, S. B., Stroud, R. M., and Bourne, H. R., 1986, Family of G protein a chains: amphipathic analysis and predicted structure of functional domains, Protein Engineering 1:47.PubMedGoogle Scholar
  17. Masters, S. B., Sullivan, K. A., Miller, R. T., Beiderman, B., Lopez, N. G., Ramachandran, J., and Bourne, H. R., 1988, Carboxy terminal domain of G specifies coupling of receptors to stimulation of adenylyl cyclase, Science, 241:448.PubMedCrossRefGoogle Scholar
  18. Miller, R. T., Masters, S. B., Sullivan, K. A., Beiderman, B., and Bourne, H. R., 1988, A mutation that prevents GTP-dependent activation of the a chain of GS,Nature, in press.Google Scholar
  19. Navon, S. E. and Fung, B. K.-K., 1987, Characterization of transducin from bovine retinal rod outer segments. Participation of the animo-terminal region of Ta in subunit interaction, T. Biol. Chem. 262:15746.Google Scholar
  20. Rall, T. and Harris, B. A., 1987, Identification of the lesion in the stimulatory GTP-binding protein of the uncoupled S49 lymphoma, FEBS Lett. 224:365.PubMedCrossRefGoogle Scholar
  21. Seeburg, P. H., Colby, W. W., Capon, D. J., Goeddel, D. V., and Levinson, A. D., 1984, Biological properties of human c-HA-rasl genes mutated at codon 12, Nature 312:71.PubMedCrossRefGoogle Scholar
  22. Sigal, I. S., Gibbs, J. B., D’Alonzo, J. S., and Scolnick, E. M., 1986b, Identification of effector residues and a neutralizing epitope of Ha ras p21, Proc. Natl. Acad. Sci. USA 83:4725.PubMedCrossRefGoogle Scholar
  23. Stryer, L. and Bourne, H. R., 1986, G proteins: A family of signal transducers, Ann. Rev. Cell Biol. 2:391.PubMedCrossRefGoogle Scholar
  24. Sullivan, K. A., Miller, R. T., Masters, S. B., Beiderman, B., Heideman,W., and Bourne, H. R., 1987, Identification of receptor contact site involved in receptor-G protein coupling, Nature 330:758.PubMedCrossRefGoogle Scholar
  25. Trahey, M., and McCormick, F., 1987, A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants, Science 238:542.PubMedCrossRefGoogle Scholar
  26. Ui, M., Katada, T., Murayama, T., Kurose, H., Yajima, M., Tamura, M., Nakamura, T., and Nogimori, K., 1984, Islet-activating protein, pertussis toxin: A specific uncoupler of receptor-mediated inhibition of adenylate cyclase, Advances in Cyclic Nucleotide and Protein Phosphorylation Research 17:145.PubMedGoogle Scholar
  27. Van Dop, C., Yamanaka, G., Steinberg, F., Sekura, R. D., Manclark, C. R., Stryer, L., and Bourne, H. R., 1984, ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors, T. Biol. Chem. 259:23.Google Scholar
  28. Winslow, J. W., Bradley, J. D., Smith, J. A., and Neer, E. J., 1987, Reactive sulfhydryl groups of (X39, a guanine nucleotide-binding protein from brain. Location and function, T. Biol. Chem. 262:4501.Google Scholar
  29. Wistow, G. J., Katial, A., Craft, C., and Shinohara, T., 1986, Sequence analysis of bovine retinal S-antigen. Relationships with a transducin and G proteins, FEBS Lett. 196:23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Susan B. Masters
    • 1
  • R. Tyler Miller
    • 1
  • Kathleen A. Sullivan
    • 1
  • Henry R. Bourne
    • 1
  1. 1.Departments of Pharmacology and Medicine and the Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations