The Cyclic Amp Producing Pathway in Saccharomyces Cerevisiae Involves CDC25 and ras Genes Products

  • Michel Jacquet
  • Jacques Camonis
  • Emmanuelle Boy-Marcotte
  • Faten Damak
  • Hervé Garreau


In mammalian cells, the adenylate cyclase is regulated by extracellular signaling molecules, hormones and neurotransmitters. This regulation involves specific transmembrane receptors and transducers which are heterotrimer G-proteins. In response to the liganded receptor the G-protein is activated by dissociation of the GTP-bound a subunit which can then activate the adenylate cyclase. Although this complex system which also involves negative regulatory circuit, has been extensively studied, the details of its functioning have not yet been completely elucidated.


Saccharomyces Cerevisiae Adenylate Cyclase cAMP Dependent Protein Kinase Cell Division Cycle RAS2 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbacid, M., 1987, ras genes Ann. Rev. Biochem. 56, 779–827PubMedCrossRefGoogle Scholar
  2. Boutelet, F., PetitJean, A., and Hilger, F., 1985, CDC35 mutants are defective in adenylate cyclase and are allelic with cyrl mutants while casl, a new gene , is involved in the regulation of adenylate cyclase. Embo J. , 4 , 2635–2642.PubMedGoogle Scholar
  3. Boy-Marcotte, E., Garreau, H., and Jacquet, M., 1987, Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability in Saccharomyces cerevisiae. Yeast 3, 85–93PubMedCrossRefGoogle Scholar
  4. Broek, D., Toda, T., Michaeli, T., Levin, L., Birchmeier, C., Zoller, M., Powers, S., and Wigler, M., 1987, The S. cerevisiae CDC25 gene product regulates the RAS/ adenylate cyclase pathway. Cell, 48 , 789–799PubMedCrossRefGoogle Scholar
  5. Camonis, J., Kalekine, M., Gondré, B., Garreau, H., Boy-Marcotte, E., and Jacquet, M., 1986, Characterization, cloning and sequence analysis of CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. The EMBO J., 5, 375–380.Google Scholar
  6. Camonis, J., and Jacquet, M., 1988, A new ras mutation which suppresses the CDC25 gene requirement for growth in Saccharomyces cerevisiae. Mol. Cell Biol. 8, 2980–2983.PubMedGoogle Scholar
  7. Casperson, G.F., Walker, N., Brassier, A.R., and Bourne, H.R., 1983, A guanine nucleotide sensitive adenylate cyclase in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 158, 7911–7914Google Scholar
  8. Casperson, G.F., Walker, N., and Bourne, R.H., 1985, Isolation of the gene encoding adenylate cyclase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82, 5060 – 5063PubMedCrossRefGoogle Scholar
  9. Daniel, J., and Simchen, C., 1986, Clones from two different genomic regions complement the cdc25 start mutation of Saccharomyces cerevisiae Curr. Genet., 10 , 643–646.Google Scholar
  10. DeFeo-Jones, D., Scolnick, E., Koller, R., and Dhar, R. 1983 ray-related gene sequence identified from Saccharomyces cerevisiae. Nature , 306, 707–709Google Scholar
  11. Feig, L.A., Pan, B., Roberts, T.M., and Cooper, G.M., 1986, Isolation of ras GTP-binding mutants using an in situ colony binding assay. Proc. Natl. Acad. Sci. USA 83, 4607 – 4611Google Scholar
  12. Jacquet, M., and Camonis, J., 1985, Contrôle du cycle de division cellulaire et de la sporulation chez Saccharomyces cerevisiae par le système de l’AMPc . Biochimie, 67, 35–43.PubMedCrossRefGoogle Scholar
  13. Kataoka, T., Powers, S., McGill, C., Fasano, O., Strathern, J., Broach, J.R., and Wigler, M., 1984, Genetic analysis of yeast RAS1 and RAS2 genes. Cell , 37, 437–445.Google Scholar
  14. Kataoka, T., Powers, S., Cameron, S., Fasano, O., Golfarb, M., Broach, J., and Wigler, M, 1985a, Functional homology of mammalian and yeast ras genes Cell 40, 19–26PubMedCrossRefGoogle Scholar
  15. Kataoka, T., Broek, D., and Wigler, M., 1985b, DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase Cell 43, 493–505Google Scholar
  16. Lissziewiecz, J., Godany, A., Förster, H.H., Küntzel, H., 1987, Isolation and nucleotide sequence of a Saccharomyces cerevisiae protein kinase gene suppressing the cell cycle start mutation cdc25. J. Biol Chem 262, 2549–2553Google Scholar
  17. Martegani, E., Baroni, M. D., Frascotti, G., and Alberghina, L., 1986, Molecular cloning and transcriptional analysis of the start gene CDC25 of Saccharomyces cerevisiae . EMBO J. 5, 2363–2369.PubMedGoogle Scholar
  18. Masson, P., Jacquemin, J. M., and Culot, M., 1984, Molecular cloning of the tsm0185 gene responsible for adenylate cyclase activity in Saccharomyces cerevisiae. Ann. Microbiol. (Inst. Pasteur), 135, 344–351Google Scholar
  19. Masson, P., Lenzen, G., Jacquemin, J.M., and Danchin, A., 1986, Yeast adenylate cyclase catalytic domain is carboxy terminal Currr. Genet. 10, 343–352CrossRefGoogle Scholar
  20. Matsumoto, K., Uno, I., Oshima Y., and Ishikawa, T., 1982, Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP -dependent protein kinase. Proc. Natl. Acad. Sci. USA 79, 2355–2359PubMedCrossRefGoogle Scholar
  21. Powers, S., Kataoka, T., Fasano, O., Goldfarb, M., Strathern, J.N., Broach, J.R. and Wigler, M., 1984, Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins . Cell, 36 , 607–612.PubMedCrossRefGoogle Scholar
  22. Pringle, J.R., and Hartwell, L.W., 1981, The Saccharomyces cerevisiae cell cycle . In Strathern, J.N., Jones, E.W., and Broach, J. R. (Eds)” The molecular biology of the yeast Saccharomyces cerevisiae : life cycle and inheritance. Cold Spring Harbor laboratories, N.Y. 97–142.Google Scholar
  23. Robinson, L.C., Gibbs, J.B., Marshall, M.S., Sigal, LS., and Tatehell, K., 1987, CDC25 : a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science, 235 , 1218–1221.PubMedCrossRefGoogle Scholar
  24. Sigal, LS., Gibbs, J.B., D’Alonzo, LS., Temeles, G.L., Wolanski, B.S., Socher, S.H., and Scolnick, E.M., 1986, Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effect. Proc. Natl. Acad. Sci. USA 83, 952–956PubMedCrossRefGoogle Scholar
  25. Tatchell, K., Chaleff, D., DeFoe-Jones, D., and Scolnick, E.M., 1984, Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability Nature 309, 523–527Google Scholar
  26. Thevelein, LM., 1984, Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Arch. Microbiol. 138, 64–67PubMedCrossRefGoogle Scholar
  27. Toda, T., Cameron, S., Sass, P., Zoller, M., and Wigler, M., 1987, Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP dependent protein kinase. Cell., 50, 277–287 .PubMedCrossRefGoogle Scholar
  28. Zarret, S., and Sherman, F., 1986, DNA sequence required for efficient transcription termination in yeast. Cell, 28 , 563–573 .CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Michel Jacquet
    • 1
  • Jacques Camonis
    • 1
  • Emmanuelle Boy-Marcotte
    • 1
  • Faten Damak
    • 1
  • Hervé Garreau
    • 1
  1. 1.Groupe Information Génétique et DéveloppementUniversité Paris-SudOrsay CédexFrance

Personalised recommendations