Advertisement

Biochemical Properties of Ha-Ras Encoded P21 Mutants

  • Jacob John
  • Mathias Frech
  • Jürgen Feuerstein
  • Roger S. Goody
  • Fred Wittinghofer

Abstract

Mutations of the ras proto-oncogenes rasH, rasK and rasN have been found in many human tumours and in the ras genes of the acutely transforming animal retroviruses HaMuSV and KiMuSV. (for reviews see Gibbs et al., 1985; Barbacid, 1987). These mutations were found to be single or double point mutations and could be localized in all cases to two different regions of the amino acid sequence of the ras encoded p21 proteins. Thus, either amino acids 12/13 or amino acids 59/61 were found to be mutated. The retroviral p21 proteins of the Kirsten and Harvey strain of MuSV contain a double mutation involving glycine12 and alanines59, where alanine59 is changed to threonine in both cases (Dhar et al., 1982; Tsuchida et al., 1982; Yasuda et al., 1984).

Keywords

Double Mutation Dissociation Rate Guanine Nucleotide Single Point Mutation Dissociation Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbacid, M. (1987), Ann. Rev.Biochem. 56, 779–827PubMedCrossRefGoogle Scholar
  2. Der, C.J., Finkel, T. and Coper, G.M. (1986), Cell 44, 167–176PubMedCrossRefGoogle Scholar
  3. Dhar, R., Ellis, R.W., Shiy, T.Y., Oroszian, S., Shapiro, B., Maizel, J., Lowy, D. and Scoinick, E. (1982), Science 217, 934–936PubMedCrossRefGoogle Scholar
  4. Chardin, P., Yeramian, P. and Tavitian, A., (1985), Int.J.Cancer 35, 647–652PubMedCrossRefGoogle Scholar
  5. DeVos, A.M., Tong, L., Milburn, M.V., Matias, P.M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E. and Kim, S.-H. (1988), Science 239, 888–89 3Google Scholar
  6. Feuerstein, J., Kalbitzer, H.R., John, J., Goody, R.S., and Wittinghofer, F. (1937), Eur.J.Biochem. 162, 49–55CrossRefGoogle Scholar
  7. Gibbs, J., Sigal, I.S. and Scolnick, E.M. (1985) Trends Biochem., Sci. 10, 350–353CrossRefGoogle Scholar
  8. Hall, A. and Self, A.J. (1986) J.Biol.Chem. 261, 10963–10965PubMedGoogle Scholar
  9. Hattori, S., Clanton, D.H., Satoh, T. Nakamura, S. Kawakita, M. and Shih, T.Y. (1937), Mol.Cell.Biol. 7, 1999–2002Google Scholar
  10. Hiratsuka, T. (1983), Biochim.Biophys.Acta 742, 496–503PubMedCrossRefGoogle Scholar
  11. Hoshino, M., Clanton, D.H., Shih, T.Y. Kawakitra, M., and Hattori, S. (1987), J.Biochem. (Tokyo) 102, 503–511Google Scholar
  12. Lacal, J.C. and Aaronsen, S.A. (1986), Mol.Cell.Biol. 6, 4214–4220PubMedGoogle Scholar
  13. Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E. and Kira, S.-H. (1988) Science, 239, 888–893PubMedCrossRefGoogle Scholar
  14. Trahey, M. and McCormickrF. (1987) 238, 542–545Google Scholar
  15. Tsuchida, M., Ohtsubo, E. and Ryder, T. (1982), Science 217, 937–939PubMedCrossRefGoogle Scholar
  16. Tucker, J., Sczakiel, G., Feuerstein, J., John, J., Goody, R.S. and Wittinghofer, F. (1986) EMBO J: 5, 1351–1358PubMedGoogle Scholar
  17. Yammamoto, F. and Perucho, M. (1984), Nucl.Acid Res. 12, 8873–8886CrossRefGoogle Scholar
  18. Yasuda, S., Furuichi, M. and Soeda, E., (1984) Nucl.Acid Res.12, 5583–5583CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jacob John
    • 1
  • Mathias Frech
    • 1
  • Jürgen Feuerstein
    • 1
  • Roger S. Goody
    • 1
  • Fred Wittinghofer
    • 1
  1. 1.Max-Planck-Institut für medizinische ForschungAbteilung BiophysikHeidelbergGermany

Personalised recommendations