Factors and Ribosomes: Their Coupling and Mode of Signal Processing

  • Wim Möller
  • Reinout Amons


This chapter is concerned with the function of elongation factors as revealed by studies on factor-ribosome interactions. To try presenting a comprehensive picture is impossible given the formidable complexity of the ribosome and the many allosteric interactions between the components. Rather we have chosen a few critical issues, which are amenable to reasonable interpretation. One is that factors possess a GTPase in association with the ribosome. We know or pretend to know that mainly a small distinct area of the 50S ribosome induces this activity and that as a result factor interactions with the ribosome occur in an orderly fashion. We are confident that bacterial 50S ribosomal A protein (L12) is involved in translocation events. Although we are aware of the danger of trying to reduce complex problems to a small facet, the structure and mobile properties of the 50S ribosome stalk guarantee an active role for their constituents in GTPase-related functions.


Elongation Factor Casein Kinase Guanine Nucleotide Binding Protein Dimethyl Sulphate Artemia Cyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adari, H., Lowy, D.R., Willumsen, B.M., Der, C.J., McCormick, F., 1988, Science 240:518–521.PubMedCrossRefGoogle Scholar
  2. Arai, K-I., Kawakita, M., and Kaziro, Y., 1974, J.Biol.Chem., 249:3311–3313.PubMedGoogle Scholar
  3. Beauclerck, A.A.D., Cundliffe, E., and Dijk, J., 1984, J.Biol.Chem., 259:6559–6563.Google Scholar
  4. Blumenthal, T., Landers, T.A., and Weber, K., 1972, Proc.Natl.Acad.Sci. USA 69:1313–1317.PubMedCrossRefGoogle Scholar
  5. Chau, V., Romero, G., and Biltonen, R.L., 1981, J.Biol.Chem., 256:5591–5596.PubMedGoogle Scholar
  6. Cowgill, C.A., Nichols, B.G., Kenny, J.W., Butler, P., Bradbury, E.M., and Traut, R.R., 1984, J.Biol.Chem., 259:15257–15263.PubMedGoogle Scholar
  7. Deterre, P., Bigay, J., Forquet, E., Robert, M., Chabre, M., 1988, Proc.Natl.Acad.Sci.USA 85:2424–2428.PubMedCrossRefGoogle Scholar
  8. Dholakia, J.N., and Wahba, A.J., 1988, Proc.Natl.Acad.Sci.USA 85:51–54.PubMedCrossRefGoogle Scholar
  9. Ejiri, S., and Honda, H., 1985, Biochem.Biophys.Res.Commun. 128:53–60.PubMedCrossRefGoogle Scholar
  10. Fung, B.K-K., Hurley, J.B., and Stryer, L., 1981, Proc.Natl.Acad.Sci.USA 78:152–156.PubMedCrossRefGoogle Scholar
  11. Gibbs, J.B., this volume. Google Scholar
  12. Girschovich, A.S., Kurtskhalia, T.V., Ovchinnikov, Y.A., Vasiliev, V.D., 1981, FEBS Lett. 130:54–59.CrossRefGoogle Scholar
  13. Gudkov, A.T., Gongadze, G.M., Bushuev, V.N., and Okon, M.S. 1982, FEBS Lett. 138:229–232.PubMedCrossRefGoogle Scholar
  14. Hamel, E., and Nakamoto, T., 1972, J.Biol.Chem. 247:6810–6817.PubMedGoogle Scholar
  15. Ho, Y.K., and Hingorani, V.N., this volume.Google Scholar
  16. Janssen, G.M.C., and Möller, W., 1988a, Eur.J.Biochem. 171:119–129.PubMedCrossRefGoogle Scholar
  17. Janssen, G.M.C., and Möller, W., 1988b, J.Biol.Chem. 263:1773–1778.PubMedGoogle Scholar
  18. Janssen, G.M.C., Maessen, G.D.F., Amons, R., Möller, W., 1988c, J. Biol.Chem. in press.Google Scholar
  19. Kakidani, H., and Ptashne, M., 1988, Cell 52:161–167.PubMedCrossRefGoogle Scholar
  20. Kaziro, Y., 1973, In: Nakao, M., and Packer, L. (Eds), Organization of energy-transducing membranes, pp.187–200, University Park Press, Tokyo.Google Scholar
  21. Kaziro, Y., 1978, Biochim.Biophys.Acta 505:95–127.PubMedCrossRefGoogle Scholar
  22. Kirsebom, L.A., Anions, R., and Isaksson, L.A., 1986, Eur.J.Biochem. 156:669–675.PubMedCrossRefGoogle Scholar
  23. Kischa, K., Möller, W., and Stoffler, G., 1971, Nature New Biol. 233:62–63.PubMedCrossRefGoogle Scholar
  24. Liljas, A., 1982, Prog.Biophys.Mol.Biol. 40:161–228.PubMedCrossRefGoogle Scholar
  25. Maassen, J.A., and Möller, W., 1974, Proc.Natl.Acad.Sci.USA 71:1277–1280PubMedCrossRefGoogle Scholar
  26. Maassen, J.A., and Möller, W., 1978, J.Biol.Chem. 253:2777–2783.PubMedGoogle Scholar
  27. Maassen, J.A., and Möller, W., 1981, Eur.J.Biochem. 115:279–285.PubMedCrossRefGoogle Scholar
  28. MacConnell, W.P., Kaplan, N.O., 1982, J.Biol.Chem. 257:5359–5366.PubMedGoogle Scholar
  29. Maessen, G.D.F., Amons, R., Maassen, J.A., and Möller, W., 1986, FEBS Lett. 208:77–83.CrossRefGoogle Scholar
  30. Maessen, G.D.F., Amons, R., Zeelen, J.P., and Möller, W., 1987, FEBS Lett. 223:181–186.PubMedCrossRefGoogle Scholar
  31. Miller, D.L., 1972, Proc.Natl.Acad.Sci.USA 69:752–755.PubMedCrossRefGoogle Scholar
  32. Moazed, D., Robertson, J.M., and Noller, H.F., 1988, Nature 334:362–364.PubMedCrossRefGoogle Scholar
  33. Modolell, J., and Vazquez, D., 1975, In: Arnstein, H.R.V., (Ed), MTP International Reviews on Science, vol.7, Synthesis of Amino Acids and Proteins, pp. 137–178, Butterworths, London.Google Scholar
  34. Möller, W., 1974, In: Nomura, M., Tissières, A., and Lengyel, P. (Eds), Ribosomes, pp. 711–731, Cold Spring Harbor Laboratory.Google Scholar
  35. Möller, W., and Amons, R., 1985, FEBS Lett. 186:1–7.PubMedCrossRefGoogle Scholar
  36. Möller, W., and Maassen, J.A., 1985, In: Hardesty, B., and Kramer, G. (Eds), Structure, function and genetics of ribosomes, pp. 309–325, Springer Verlag New York, Berlin, Heidelberg, London, Paris, Tokyo.Google Scholar
  37. Möller, W., Amons, R., Janssen, G., Lenstra, J.A., Maassen, J.A., 1986, In: Decleir, W., Moens, L., Siegers, H., Jaspers, E., and Sorgeloos, P. (Eds), Artemia Research.and its applications. Vol.2, Physiology, Biochemistry, Molecular Biology pp. 451–469. Universa Press, Wetteren, Belgium.Google Scholar
  38. Möller, W., Schipper, A., and Amons, R., 1987, Biochimie 69:983–989.PubMedCrossRefGoogle Scholar
  39. Parmeggiani, A., and Sander, G., 1981, Mol.Cel.Bioch. 35:129–158.CrossRefGoogle Scholar
  40. Printz, M.P., and Miller, D.L., 1973, Biochem.Biophys.Res.Commun. 53:752–755.CrossRefGoogle Scholar
  41. Sacchi, G.A., Zocchi, G., and Cocucci, S., 1984, Eur.J.Biochem. 139:1–4.PubMedCrossRefGoogle Scholar
  42. Schmidt, F.J., Thomson, J., Lee, K., Dijk, J., Cundliffe, E., 1981, J.Biol.Chem. 256:12301–12305.PubMedGoogle Scholar
  43. Slobin, L.I., and Möller, W., 1975, Nature 258:452–454.PubMedCrossRefGoogle Scholar
  44. Trahey, M., and McCormick, F., 1987, Science 238:542–545.PubMedCrossRefGoogle Scholar
  45. Traut, R.R., Lambert, J.M., and Kenny, J.W., 1983, J.Biol.Chem. 258: 14592–14598.PubMedGoogle Scholar
  46. Van Agthoven, A.J., Maassen, J.A., Schrier, P.I., and Möller, W., 1975, Biochem.Biophys.Res.Commun. 64:1184–1191.PubMedCrossRefGoogle Scholar
  47. Van Hemert, F.J., Amons, R., Pluijms, W.J.M., Van Ormondt, H. and Möller, W., 1984, EMBO J. 5:1109–1113.Google Scholar
  48. Webb, M.R. and Eccleston, J.F., 1981, J.Biol.Chem. 256:7734–7737.PubMedGoogle Scholar
  49. Wolf, H., Chinali, G., and Parneggiani, A., 1974, Proc.Natl.Acad.Sci.USA 71:4910–4914.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Wim Möller
    • 1
  • Reinout Amons
    • 1
  1. 1.Department of Medical BiochemistryUniversity of LeidenLeidenThe Netherlands

Personalised recommendations