Abstract
BiCMOS technology combines Bipolar and CMOS transistors in a single integrated circuit. By retaining the benefits of Bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with speed-power-density performance previously unattainable with either technology individually. CMOS technology maintains an advantage over Bipolar in power dissipation, noise margins, packing density, and the ability to integrate large complex functions with high yields. Bipolar technology has advantages over CMOS in switching speed, current drive per unit area, noise performance, analog capability, and I/O speed. This last point is especially significant given the growing importance of ECL I/O, historically the exclusive domain of Bipolar technology, for high speed systems [1.1]. It follows that BiCMOS technology offers the advantages of: 1) improved speed over CMOS, 2) lower power dissipation than Bipolar (which simplifies packaging and board requirements), 3) flexible I/Os (TTL, CMOS, or ECL), 4) high performance analog, and 5) latchup immunity [1.2]. Compared to CMOS, the reduced dependence on capacitive load and process/temperature variations, and the multiple circuit configurations and I/Os possible with BiCMOS greatly enhance design flexibility and can lead to reduced design cycle time. The inherent robustness of BiCMOS with respect to temperature and process variations also reduces the variability of final electrical parameters resulting in a higher percentage of prime units, an important economic consideration.
Keywords
- Power Dissipation
- CMOS Technology
- Gate Oxide
- Solid State Circuit
- Capacitive Load
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
A.R. Alvarez, P. Meiler, B. Tien, “2 µm Merged BIMOS Technology,” 1984 Int. Electron Devices Meeting, pp. 420–424.
A.R. Alvarez, D.W. Schucker, “BiCMOS Technology for Semi-Custom Integrated Circuits,” Cust. Int. Cir. Conf., pp. 22.1.1–22. 1. 5, 1988.
H. G. Lin, J.C. Ho, R.R. Iyer, K. Kwong, “Complementary MOS-Bipolar Transistor Structure,” IEEE Trans. Electron Devices, Vol. ED-16, No. 11, Nov. 1969, pp. 945–951.
M.A. Polinsky, O.H. Schade, J.P. Keller, “CMOS-Bipolar Monolithic Integrated Circuit Technology,” 1973 Int. Electron Devices Meeting, pp. 229–231.
J. D. Plummer, J.D. Meindl, “A Monolithic 200-V CMOS Analog Switch,”J. Solid State Circuits, SC-11, No. 6, Dec. 1976, pp. 809–817.
S. Davis, “Simplified Driver, New Applications Spur Plasma-Panel Usage,” Electronic Design News, Sept. 20, 1979, pp. 51–55.
B. Holland, D.P. Peppenger, “Single-Chip Linear Regulator Handles 125V I/O Differential,” Electronic Design, Sept. 17, 1981, pp. 129–133.
T.E. Ruggles, G.V. Fay, “Mixed Process Puts High Power Under Control,” Electronic Design, Vol$130, No. 7, March 31, 1982, pp. 69–77.
A.R. Alvarez, R.M. Roop, K.I. Ray, G. R. Gettemeyer, “Lateral DMOS Transistor Optimized for High Voltage BiCMOS Applications,” 1983 Int. Electron Devices Meeting, pp. 420–423.
S. Lytle, R. Roop, D. Cave, D. Hughes, W. Gegg, A.R. Alvarez, “Power BiCMOS - A Versatile IC Technology for Switching and Regulation Applications”, 1984 Custom Integrated Circuits Conference, pp. 51–56.
E.J. Wildi, T.P. Chow, M.S. Adler, M.E. Cornell, G.C. Pifer”, New High Voltage IC Technology”, 1984 Int. Electron Devices Meeting pp. 262–265.
R.T. Gallager, “Single Chip Carries Three Technologies,” Electronics Week, Dec. 10, 1984, p. 28.
H. Higuchi, G. Kitsukawa, T. Ikeda, Y. Nishio, “Performance and Structures of Scaled-Down Bipolar Devices Merged with CMOSFETs,” Int. Electron Devices Meeting, p. 694–697, 1984.
J. Miyamoto, S. Saitoh, H. Momose, H. Shibata, K. Kanzaki, S. Kohyama,” A 1.01.tm N-Well CMOS/ Bipolar Technology For VLSI Circuits”, 1984 Int. Electron Devices Meeting, pp. 63–66.
B. Bastani, C. Lage, L. Wong, J. Small, R. Lahri, L. Bouknight, T. Bowman, J. Manoliu, P. Tuntasood, “Advanced lµ BiCMOS Technology for High Speed 256K SRAMs,” 1987 Symp. on VLSI Technology, pp. 41–42.
N. Tamba S. Miyaoka, M. Odaka, M. Hirao, K. Ogiue, K. Tamada, T. Ikeda, H. Higuchi, H. Uchida, “An 8ns 256K BiCMOS SRAM,” 1988 Int. Solid State Circuits Conference, pp. 184–185.
A.R. Alvarez, J. Teplik, D.W. Schucker, T. Hulseweh, H.B. Liang, M. Dydyk, I. Rahim, “Second Generation BiCMOS Gate Array Technology,” 1987 Bipolar Circuits and Technology Meeting, pp. 113–117.
T. Hotta, I. Masuda, H. Maejima, A. Hotta, “CMOS/Bipolar Circuits for 60MHz Digital Processing,” 1986 Int. Solid State Circuits Conference, pp. 190–191.
A.R. Alvarez, J. Teplik, H.B. Liang, T. Hulseweh, D.W. Schucker, K.L. McLaughlin, K.A. Hansen, B. Smith, “VLSI BiCMOS Technology and Applications,” 1987 International Symp on VLSI Technology, Systems, and Applications, pp. 314–319.
M.P. Brassington, M. El-Diwany, P. Tuntasood, R.R. Razouk, “An Advanced Submicron BiCMOS Technology for VLSI Applications,” 1988 Symp. on VLSI Technology, pp. 89–90.
M. Kubo, “Perspective on BiCMOS VLSIs,” Symp. VLSI Technology Dig. Tech. Papers, pp. 89–90, 1987. Also in IEEE J. Solid State Circuits, Vol. SC-23, No. 1, Feb. 1988, pp. 5–11.
B.L. Morris, “BiCMOS Digital Design Techniques and Applications,” IEDM BiCMOS Technology and Design Short Course, 1987.
C. Sodini, S.S. Wong, P.K. Ko, “A Framework to Evaluate Technology and Device Enhancements for MOS Integrated Circuits,” IEEE J. Solid State Circuits, Vol. SC-24, No. 1, Feb. 1989, pp. 118–127.
H.J. Bohm, L. Bernewitz, W.R. Bohm, R. Kopl, “Megaelectronvolt Phosphorus Implantation for Bipolar Devices,” IEEE Trans. Electron Devices, Vol. ED-35, No. 10, Oct. 1988, pp. 945–951.
R.C. Lutz, Aspen Semiconductor Corp., Private Communication, 1988.
T.Y. Chiu, et al, “A High Speed Super Self-Aligned Bipolar-CMOS Technology,” Int. Electron Device Meeting, pp. 24–27, 1987.
T. Yuzuriha, T. Yamaguchi, J. Lee, “Submicron Bipolar-CMOS Technology Using 16 GHz Ft Double Poly-Si Bipolar Devices,” Int. Electron Device Meeting, pp. 748–751, 1988
K. Shibayama, Y. Akasaka, “Laboratory and Factory Automation for ULSI Development and Mass Production,” Int. Electron Device Meeting, pp. 736–739, 1988.
R.A. Chapman, C.C. Wei, D.A. Bell, S. Aur, G.A. Brown, R.A. Haken, “0.5 Micron CMOS for High Performance at 3.3V,” Int. Electron Device Meeting, pp. 52–55, 1988.
B. Cole, “Aspen Shows BiCMOS Can Yield Fast SRAMs,” Electronics pp. 88, Feb. 1989.
H.V. Tran, D.B. Scott, K. Fung, R. Havemann, R.E. Eklund, T.E Ham, R.A. Haken, A.H. Shah, “An 8ns Battery Backup Submicron BiCMOS 256K ECL SRAM,” Int. Solid State Circuits Conf. Dig. Tech. Papers, pp. 188–189, 1988.
R.A. Kurtis, D.D. Smith, T.L. Bowman, “A 12ns 256K BiCMOS sRAM,” Int. Solid State Circuits Conf. Dig. Tech. Papers, pp. 186–187, 1988.
M. Matsui, H. Momose, Y. Urakawa, T. Maeda, A. Suzuki, N. Urakawa, K. Sato, K. Makita, J. Matsunaga, K. Ochii, “An 8ns 1Mb ECL BiCMOS SRAM,” Int. Solid State Circuits Conf. Dig. Tech. Papers, pp. 38–39, 1989.
H.V. Tran, K. Fung, D. Bell, R. Chapman, M. Harward, T. Suzuki, R. Havemann, R.Eklund, R. Fleck, D. Le, C. Wei, N. Iyengar, M. Rodder, R.A. Haken, D.B. Scott, “An 8ns 1MB ECL SRAM with a Configurable Memroy Array Size,” Int. Solid State Circuits Conf. Dig. Tech. Papers, pp. 36–37, 1989.
M. Suzuki, S. Tachibana, A. Watanabe, S. Shukuri, H. Higuchi, T. Nagano, K. Shimohigashi, “A 3.5ns/500mW 16Kb BiCMOS ECL RAM,” Int. Solid State Circuits Conf. Dig. Tech. Papers, pp. 32–33, 1989.
P.T. Hickman, F. Ormerod, D.W. Schucker, “A High Performance 6000 Gate BIMOS Logic Array,” Custom Int. Circuit Conference, pp. 562–564, 1986.
B. Cole, “Now There’s More Than Just Raw Speed in The ECL Arena,” Electronics, pp. 84–87, Feb. 1989.
P. Bosshart, “Introduction to Microprocessor Design,” Int. Electron Device Meeting Short Course, 1988.
T. Hotta, T. Bandoh, A. Hotta, T. Nakano, S. Iwamoto, S. Adachi, “A 70Mhz 32b Microprocessor with 1.0µm BiCMOS Macrocell Library„“ Int. S.lid State Circuits Conf. Dig. Tech. Papers, pp. 124–125, 1989.
H. Momose et al, “0.5µm BiCMOS Technology,” Int. Electron Device Meeting, pp. 838–840, 1988.
H. Fukuda, S. Horiguchi, M. Urano, K. Fukami, K. Matsuda, N. Ohwada, H. Akiya, “A BiCMOS Channelless Masterslice with On-Chip Voltage Converter,” Ina. Solid State Circuits Conf. Dig. Tech. Papers, pp. 176–177, 1989.
W. Heimsch, B. Hoffmann, R. Krebs, E. Muellener, B. Pfaeffel, K. Ziemann, “Merged CMOS/Bipolar Current Switch Logic,”Int. Solid State Circuits Conf. Dig. Tech. Papers, pp. 112–1133, 1989.
Y. Nishio, F. Murabayashi, S. Kotoku, A. Watanabe, S. Shukuri, K. Shimohigashi, “A BiCMOS Logic Gate with Positive Feedback,” Int. Solid State Circuits Conf. Dig. Tech. Papers, pp. 116–117, 1989.
J.A. Coriale, W.C. Holton, (Eds), “Submicron BiCMOS Technology for the 90s,” SRC Topical Research Conference, Dec. 10–11, 1087. N. Anatha “BiCMOS Roadmap”.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1990 Springer Science+Business Media New York
About this chapter
Cite this chapter
Alvarez, A.R. (1990). Introduction To BiCMOS. In: Alvarez, A.R. (eds) BiCMOS Technology and Applications. The Springer International Series in Engineering and Computer Science, vol 76. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2029-7_1
Download citation
DOI: https://doi.org/10.1007/978-1-4757-2029-7_1
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4757-2031-0
Online ISBN: 978-1-4757-2029-7
eBook Packages: Springer Book Archive