Skip to main content

Genetics of Other Intemperate Bacteriophages

  • Chapter
Bacterial and Bacteriophage Genetics

Part of the book series: Springer Series in Microbiology ((SSMIC))

  • 196 Accesses

Abstract

Bacteriophage T4 has probably been the most intensively investigated intemperate virus, but there are many other viruses that have also been the subject of considerable study. In this chapter descriptions of selected bacteriophages are presented to illustrate the high degree of genetic diversity available to the bacterial geneticist and to provide comparisons of these phages to each other and to T4. To facilitate these comparisons, the physical properties of each phage discussed in this chapter are summarized in Table 5-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Generalized

  • Baas, P.D. (1985). DNA replication of single-stranded Escherichia coli DNA phages. Biochimica et Biophysica Acta 825: 111–139.

    Article  PubMed  CAS  Google Scholar 

  • Calendar, R. (ed.) (1988). The Bacteriophages. New York: Plenum Press.

    Google Scholar 

  • Rasched, I., Oberer, E. (1986). Ff coliphages: structural and functional relationships. Microbiological Reviews 50: 401–427.

    PubMed  CAS  Google Scholar 

  • Zinder, N.D., Horiuchi, K. (1985). Multiregulatory element of filamentous bacteriophages. Microbiological Reviews 49: 101–106.

    PubMed  CAS  Google Scholar 

Specialized

  • Auyama, A., Hayashi, M. (1986). Synthesis of bacteriophage 4,X174 in vitro: mechanism of switch from DNA replication to DNA packaging. Cell 47: 99–106.

    Article  Google Scholar 

  • Barthelemy, I., Salas, M., Mellado, R.P. (1987). In vivo transcription of bacteriophage Phi29 DNA: transcription termination. Journal of Virology 61: 1751–1755.

    PubMed  CAS  Google Scholar 

  • Berkhout, B., van Duim, J. (1985). Mechanism of translational coupling between coat protein and replicase genes of RNA bacteriophage MS2. Nucleic Acids Research 13: 6955–6967.

    Article  PubMed  CAS  Google Scholar 

  • Biebricher, C.K., Eigen, M., Luce, R. (1986). Template-free RNA synthesis by Qf3 replicase. Nature 321: 89–91.

    Article  PubMed  CAS  Google Scholar 

  • Drexler, K., Riede, I., Henning, U. (1986). Morphogenesis of the long tail fibers of bacteriophage T2 involves proteolytic processing of the polypeptide (gene product 37) constituting the distal part of the fiber. Journal of Molecular Biology 191: 267–272.

    Article  PubMed  CAS  Google Scholar 

  • Fluit, A.C., Baas, P.D., Jansz, H.S. (1986). Termination and reinitiation signals of bacteriophage 4X174 rolling circle DNA replication. Virology 154: 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Fuerst, T.R., Niles, E.G., Studier, F.W., Moss, B. (1986). Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 83: 8122–8126.

    Article  PubMed  CAS  Google Scholar 

  • Gentz, R., Bujard, H. (1985). Promoters recognized by Escherichia coli RNA polymerase selected by function: highly efficient promoters from bacteriophage T5. Journal of Bacteriology 164: 70–77.

    PubMed  CAS  Google Scholar 

  • Guo, P., Erickson, S., Anderson, D. (1987). A small viral RNA is required for in vitro packaging of bacteriophage Phi29 DNA. Science 236: 690–694.

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez, J., Barcia, J.A., Blanco, L., Salas, M. (1986). Cloning and template activity of the origins of replication of phage 429 DNA. Gene 43: 1–11.

    Article  PubMed  Google Scholar 

  • Heusterspreute, M., Ha-thi, V., Tournis-Gamble, S., Davison, J. (1987). The first-step transfer-DNA injection-stop signal of bacteriophage T5. Gene 52: 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, G.J., Rowitch, D.H., Perham, R.N. (1987). Interactions between DNA and coat protein in the structure and assembly of filamentous bacteriophage fd. Nature 327: 252–254.

    Article  PubMed  CAS  Google Scholar 

  • Krüger, D.H., Bickle, T.A. (1987). Abortive infection of Escherichia coli F’ cells by bacteriophage T7 requires ribosomal misreading. Journal of Molecular Biology 194: 349–352.

    Article  PubMed  Google Scholar 

  • Moffatt, B.A., Studier, F.W. (1987). T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 49: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Perkus, M.E., Shub, D.A. (1985). Mapping the genes in the terminal redundancy of bacteriophage SPO1 with restriction endonucleases. Journal of Virology 56: 40–48.

    PubMed  CAS  Google Scholar 

  • Serwer, P. (1986). Arrangement of double-stranded DNA packaged in bacteriophage capsids: an alternative model. Journal of Molecular Biology 190: 509–572.

    Article  PubMed  CAS  Google Scholar 

  • Tabor, S., Richardson, C.C. (1985). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences of the United States of America 82: 1074–1078.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, J., Chiura, H., Kagiyama, N., Sakaguchi, R. (1986). The behavior of the bacteriophage SPO1 in adsorbing to Bacillus subtilis. The Journal of General and Applied Microbiology 31: 569–572.

    Article  Google Scholar 

  • Witte, A., Lubitz, W., Bakker, E.P. (1987). Proton-motive-force-dependent step in the pathway to lysis of Escherichia coli induced by bacteriophage X174 gene E product. Journal of Bacteriology 169: 1750–1752.

    PubMed  CAS  Google Scholar 

  • Zavriev, S.K., Kochkina, Z.M. (1986). Bacteriophage T3 and bacteriophage T7: transcription-dependent mechanism of the transport of phage DNA into the cell during infection. Molecular Biology 20: 328–334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birge, E.A. (1988). Genetics of Other Intemperate Bacteriophages. In: Bacterial and Bacteriophage Genetics. Springer Series in Microbiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1995-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1995-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1997-0

  • Online ISBN: 978-1-4757-1995-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics