• Edward A. Birge
Part of the Springer Series in Microbiology book series (SSMIC)


In the preceding chapters there has often been some discussion about the use of a repressor to regulate transcription. Repressors are but one type of regulatory element commonly found in bacteria. This chapter expands on the role of the repressor and introduces many new regulatory elements. Implicit in the discussion that follows is the fact that protein and RNA molecules do not last indefinitely in the cell. Proteases and nucleases are produced that slowly degrade those molecules. It is this slow turnover of macromolecules that makes possible the gradual alteration of phenotypes.


Polar Mutation cAMP Receptor Protein Endospore Formation Lactose Operon Tryptophan Operon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apirion, D., Dallmann, G., Miczak, A., Szeberenyi, J., Tomcsanyi, T. (1986). Processing and decay of RNA in Escherichia coli: the chicken and egg problem. Biochemical Society Transactions 14: 807–810.PubMedGoogle Scholar
  2. Gussin, G.N., Ronson, C.W., Ausubel, F.M. (1986). Regulation of nitrogen fixation genes. Annual Review of Genetics 20: 567–591.CrossRefPubMedGoogle Scholar
  3. Haselkorn, R. (1986). Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria. Annual Review of Microbiology 40: 525547.Google Scholar
  4. Hendrix, R.W., Roberts, J.W., Stahl, F.W., Weisberg, R.A., eds. (1983). Lambda II. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.Google Scholar
  5. Lindahl, L., Zengel, J.M. (1986). Ribosomal genes in Escherichia coli. Annual Review of Genetics 20: 297–326.CrossRefPubMedGoogle Scholar
  6. Losick, R., Youngman, P., Piggott, P.J. (1986). Genetics of endospore formation in Bacillus subtilis. Annual Review of Genetics 20: 625–669.CrossRefPubMedGoogle Scholar
  7. McFall, E. (1986). cis-Acting proteins. Journal of Bacteriology 167:429–432. Miller, J.H., Reznikoff, W.S., eds. ( 1978 ). The Operon. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.Google Scholar
  8. Pelham, H.R.B. (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46: 959–961.CrossRefPubMedGoogle Scholar
  9. Saunders, J.R. (1986). The genetic basis of phase and antigenic variation in bacteria, pp. 57–76. In: Birkbeck, T.H., Penn, C.W. (eds.) Antigenic Variation in Infectious Diseases. Oxford: IRL Press.Google Scholar
  10. Arnosti, D.N., Singer, V.L., Chamberlin, M.J. (1986). Characterization of heat shock in Bacillus subtilis. Journal of Bacteriology 168: 1243–1249.PubMedGoogle Scholar
  11. Bloom, M., Skelly, S., VanBogelen, R., Neidhardt, F., Brot, N., Weissbach, H. (1986). In vitro effect of the Escherichia coli heat shock regulatory protein on expression of heat shock genes. Journal of Bacteriology 166: 380–384.PubMedGoogle Scholar
  12. Donnelly, C.E., Reznikoff, W.S. (1987). Mutations in the lac P2 promoter. Journal of Bacteriology 169: 1812–1817.PubMedGoogle Scholar
  13. Gilson, E., Rousset, J-P., Charbit, A., Perrin, D., Hofnung, M. (1986). malM, a new gene of the maltose regulon in Escherichia coli K12. I. malM is the last gene of the malK-lamB operon and encodes a periplasmic protein. Journal of Molecular Biology 191: 303–311.Google Scholar
  14. Hochschild, A., Douhan, J., III, Ptashne, M. (1986). How X repressor and X Cro distinguish between oRl and 01,3. Cell 47: 807–816.CrossRefPubMedGoogle Scholar
  15. Kramer, H., Niemöller, M., Amouyal, M., Revet, B., von Wilcken-Bergmann, B., Müller-Hill, B. (1987). lac repressor forms loops with linear DNA carrying two suitable spaced lac operators. EMBO Journal 6: 1481–1491.Google Scholar
  16. Kuhnke, B., Fritz, H-J., Ehring, R. (1987). Unusual properties of promoter-up mutations in the Escherichia coli galactose operon and evidence suggesting RNA polymerase-induced DNA bending. EMBO Journal 6: 507–513.PubMedGoogle Scholar
  17. Landick, R., Carey, J., Yanofsky, C. (1987). Detection of transcription-pausing in vivo in the trp operon leader region. Proceedings of the National Academy of Sciences of the United States of America 84: 1507–1511.CrossRefPubMedGoogle Scholar
  18. Newbury, S.F., Smith, N.H., Robinson, E.C., Hiles, I.D., Higgins, C.F. (1987). Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48: 297–310.CrossRefPubMedGoogle Scholar
  19. Nishi, T., Itoh, S. (1986). Enhancement of transcriptional activity of the Escherichia coli trp promoter by upstream A + T regions. Gene 44: 29–36.CrossRefPubMedGoogle Scholar
  20. Pakula, A.A., Young, V.B., Sauer, R.T. (1986). Bacteriophage X cro mutations: effects on activity and intracellular degradation. Proceedings of the National Academy of Sciences of the United States of America 83: 8829–8833.CrossRefPubMedGoogle Scholar
  21. Shanblatt, S.H., Revzin, A. (1986). The binding of catabolite activator protein and RNA polymerase to the Escherichia coli galactose and lactose promoters probed by alkylation interference studies. The Journal of Biological Chemistry 261: 10885–10890.PubMedGoogle Scholar
  22. Shimotsu, H., Kuroda, M.I., Yanofsky, C., Henner, D.J. (1986). Novel form of transcription attenuation regulates expression of the Bacillus subtilis tryptophan operon. Journal of Bacteriology 166: 461–471.PubMedGoogle Scholar
  23. Tullius, T.D., Dombroski, B.A. (1986). Hydroxyl radical “footprinting”: High-resolution information about DNA-protein contacts and application to X repressor and Cro protein. Proceedings of the National Academy of Sciences of the United States of America 83: 5469–5473.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Edward A. Birge
    • 1
  1. 1.Department of MicrobiologyArizona State UniversityTempeUSA

Personalised recommendations