Propagation of Polymer Slugs Through Adsorbent Porous Media

  • G. Chauveteau
  • J. Lecourtier


The effects of adsorption on the propagation of polymer slugs through oil reservoirs determine the efficiency of polymer flooding for increasing oil recovery. However, up to now the adsorption laws introduced in polymer flood simulation models were oversimplified due to a lack of knowledge. The adsorption properties relevant for polymer propagation, such as instantaneous adsorption, reorganization in adsorbed layer, exchanges of macromolecules between free solution and adsorbed layer, desorption before thermodynamic equilibrium, are analyzed on the basis of both a very careful experimental work and recent polymer adsorption theories taking into account the effects of polymer polydispersity. The influence of surface and adsorbed layer steric exclusion chromatography effects which are in competition with adsorption-desorption chromatography are discussed. The analysis of the respective influence of macromolecular diffusion and hydrodynamic convection shows that this later mechanism governs the overall polymer dispersion. Moreover a determining effect of viscous fingering on the spreading of trailing edge concentration profile is observed. In addition, a theoretical approach of hydrodynamic retention mechanism is proposed. As a practical application, a new methodology to avoid kinetic effect artefacts on the measurement of instantaneous, reversible and irreversible adsorption is described.


Porous Medium Adsorbed Layer Intrinsic Viscosity Peclet Number Hydrodynamic Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    CHAUVETEAU, G.: “Fundamental Criteria in Polymer Flow Through Porous Media”, in “Water-Soluble Polymers”, Glass J.E. Ed., Adv. in Chem. Ser., 1986, 213.Google Scholar
  2. 2.
    LECOURTIER, J. and CHAUVETEAU, G.: “Adsorption des polyacrylamides et du xanthane sur les surfaces minérales”, 3ème Colloque Européen RAP, Rome, Avril 1985, 187Google Scholar
  3. 3.
    LECOURTIER, J., LEE, L.T. and CHAUVETEAU, G.: “Adsorption of EOR Polymers on Mineral Surfaces”, AICHE Mtg., Houston, Apr. 1987.Google Scholar
  4. 4.
    BRIGHAM, W.E., REED, P.W. and DEW, J.N.: “Experiments on Mixing During Miscible Displacement in Porous Media”, SPEJ, 1961, 1Google Scholar
  5. 5.
    KOVAL, E.J.: “A Method for Predicting the Performance of Unstable Miscible Displacement in Heterogeneous media”, SPEJ, 1963, 145Google Scholar
  6. 6.
    FAYER, F.J.: “An Approximate Model With Physically Interpretable Parameters for Representing Miscible Viscous Fingering”, SPE 13166, Houston, Sept. 1984Google Scholar
  7. 7.
    VOSSOUGHI, S., SMITH, J.E., GREEN, D.W. and WILLHITE, G.P.: “A New Method to Simulate the Effects of Viscous Fingering on Miscible Displacement Processes in Porous Media”, SPEJ, 1984, 56Google Scholar
  8. 8.
    DAWSON, R, and LANTZ, R.B.: “Inaccessible Pore Volume in Polymer Flooding”, SPEJ, 1972, 448Google Scholar
  9. 9.
    WILLHITE, G.P. and DOMINGUEZ, J.G.: “Mechanisms of Polymer Retention in Porous Media” in Improved Oil Recovery by Surfactant and Polymer Flooding“, S.O. Shah and T.S. Schechter, Acad. Press. Inc., New York, 1977, 511Google Scholar
  10. 10.
    LIAUH, W.C., DUDA, J.O. and KLAUS, E.E.: “An Investigation of the Inaccessible Pore Volume Phenomenon”, AICHE Symp. Ser. 212, 1982, 78, 70Google Scholar
  11. 11.
    LOTSCH, T., MULLER, T. and PUSH, G.: “The Effect of Inaccessible Pore Volume on Polymer Core Flood Experiments”, SPE 13590, Arizona, April 1985Google Scholar
  12. 12.
    Lecourtier, J. and Chauveteau, G.: “Xanthan Fractionation by Surface Exclusion Chromatography”, Macromolecules, 1984, 17, 1340Google Scholar
  13. 13.
    LECOURTIER, J. and CHAUVETEAU, G.: “Propagation of Polymer Slugs through Porous Media”, SPE Paper n°13034, Dallas, Sept. 17–19, 1984Google Scholar
  14. 14.
    GUPTA, S.P. and TRUSHENSKI, S.P.: “Micellar Flooding - The Propagation of the Polymer Mobility Buffer Bank”, SPEJ, 1978, 5Google Scholar
  15. 15.
    SZABO, M.T.: “Some Aspects of Polymer Retention in Porous Media Using a C14-Tagged Hydrolyzed Polyacrylamide”, SPEJ, 15, 1975, 323Google Scholar
  16. 16.
    MUNGAN, N.: “Rheology and Adsorption of Aqueous Polymer Solutions”, Technology, 1965, 45Google Scholar
  17. 17.
    COHEN, Y. and CHRIST, F.R.: “Polymer Retention and Adsorption in the Flow of Polymer Solutions through Porous Media”, SPEJ, 1985, 25Google Scholar
  18. 18.
    MAERKER, J.M.: „Dependence of Polymer Retention on Flow Rate“, J. Pet. Techn., 1973, 25, 1307Google Scholar
  19. 19.
    CHAUVETEAU, G. and KOHLER, N.: “Polymer Flooding: the Essential Elements for Laboratory Evaluation”, SPE, Paper n°4745, 2nd Improved Oil Recovery Symposium, Tulsa, April, 1974Google Scholar
  20. 20.
    SORBIE, K.S., PARKER, A. and CLIFFORD, P.J.: “Experimental and Theoretical Study of Polymer Flow in Porous Media”, SPE Paper n° 14231, Las Vegas, Sept. 1985Google Scholar
  21. 21.
    MULLER, G., ANRHOURRACHE, N., LECOURTIER, J. and CHAUVETEAU, G.: “Salt Dependence of the Conformation of a Single Stranded Xanthan”, Int. J. of Biol. Macrom., 1986, 8, 167CrossRefGoogle Scholar
  22. 22.
    LECOURTIER, J., CHAUVETEAU, G. and MULLER, G.: “Salt-Induced Extension and Dissociation of a Native Double Stranded Xanthan”, Int. J. of Biol. Macrom., 1986, 8, 307Google Scholar
  23. 23.
    MULLER, G.: “Propriétés statiques et dynamiques de polymères utilisés en récupération assistée du pétrole”, 2ème Colloque Européen RAP, Paris, Nov. 1982, 163Google Scholar
  24. 24.
    BAGASSI, M., Thesis: “Comportement hydrodynamique des macromolecules dans les milieux poreux fins en régime de déformation faible”, University of Brest, 1986, FranceGoogle Scholar
  25. 25.
    Chauveteau, G. and Kohler, N.: “Influence of Microgels in Xanthan Polysaccharide Solutions on their Flow through Various Porous Media”, SPEJ., 1984, 24, 361Google Scholar
  26. 26.
    CHAUVETEAU, G.: “Rod-Like Polymer Solution Flow through Fine Pores: Influence of Pore Size on Rheological Behavior”, J. of Rheol., 1982, 26 (2), 111CrossRefGoogle Scholar
  27. 27.
    De GENNES, P.G.: „Scaling Concepts in Polymer Physics“, Ithaca, New York Cornell Univ. Press, 1979Google Scholar
  28. 28.
    PEFFERKORN, E., CARROY, A. and VAROQUI, R.: “Dynamic Behavior of Flexible Polymers at a Solid/Liquid Interface”, J. Polym. Sci., 1985, 23 (10), 1957Google Scholar
  29. 29.
    TAKUHASHI, A. and KAWAGUCHI, M.: „The Structure of Macromolecules Adsorbed on Interfaces“, Adv. Polym. Sci., 1982, 46, 1CrossRefGoogle Scholar
  30. 30.
    COHEN STUART, M.A., COSGROVE, T. and VINCENT, B.: „Experimental aspects of Polymer Adsorption at Solid/Solution Interfaces“, 1986, 24, 143Google Scholar
  31. 31.
    HESSELINK, F. Th.: “On the Theory of Polyelectrolyte Adsorption”, J. Coll. Int. Sci., 1977, 60, 448CrossRefGoogle Scholar
  32. 32.
    CHAUVETEAU, G., TIRREL, M. and OMARI, A.: „Concentration Dependence of the Effective viscosity of Polymer Solutions in Small Pores with Repulsive or Attractive Walls“, J. Coll. Int. Sc., 1984, 1, 100Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • G. Chauveteau
    • 1
  • J. Lecourtier
    • 1
  1. 1.Institut Francais du PétroleMalmaisonFrance

Personalised recommendations