Skip to main content

Conformational Analysis of Xanthan and Welan Using Electron Microscopy

  • Chapter
Water-Soluble Polymers for Petroleum Recovery

Abstract

Electron microscopy of xanthan indicates that this biopolymer can exist as a single- or double-stranded or partly dissociated double-stranded structure depending on the ionic strength prior to preparation for electron microscopy. Welan appears as a uniform thick, convoluted structure with contour length varying from molecule to molecule. The two-dimensional spatial correlation of the tangent direction indicates that the persistence length of double-stranded xanthan in 100mM ammonium acetate is 150 nm; the persistence length of single-stranded xanthan in 2 mM ammonium acetate is observed to be 60 nm and the persistence length of welan in 100 mM ammonium acetate is observed to be 80 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A. Sandford, I.W. Cottrell, and D.A. Pettitt, Microbial polysaccharides: New products and their commercial application, Pure and Appl. Chem., 56:879 (1984).

    Article  CAS  Google Scholar 

  2. P.E. Jansson, L. Kenne, and B. Lindberg, Structure of the extracellular polysaccharide from Xanthomonas campestris, Carbohydr. Res. 45:275 (1975).

    Article  CAS  Google Scholar 

  3. R. Moorhouse, M.D. Walkinshaw, and S. Arnott, Xanthan gum - molecular conformation and interactions, in: “Extracellular microbial polysaccharides”, P.A. Sandford and A. Laskin, ed., ACS Washington, ACS symposium series 45:81 (1977).

    Google Scholar 

  4. K. Okuyama, S. Arnott, R. Moorhouse, M.D. Walkinshaw, E.D.T. Atkins and C. Wolf-Ullish, in: “Solution properties of polysaccharides”, D.A. Brant, ed., ACS Washington, ACS symposium series 141: 411 (1980).

    Google Scholar 

  5. T. Sato, T. Norisyue, and H. Fujita, Double stranded helix of xanthan: Dissociation behavior in mixtures of water and cadoxen, Polymer J., 17: 729 (1985).

    Article  CAS  Google Scholar 

  6. T. Sato, T. Norisyue, and H. Fujita, Double stranded helix of xanthan: Dimensional and hydrodynamic properties in 0.1M aqueous sodium chloride. Macromolecules 17: 2696 (1984).

    Article  CAS  Google Scholar 

  7. G. Paradossi, and D.A. Brant, Light scattering study of a series of xanthan fractons in aqueous solution, Macromolecules 15: 874 (1982).

    Article  CAS  Google Scholar 

  8. T. Sato, T. Norisyue, and H. Fujita, Double stranded helix of xanthan in dilute solution: Evidence from light scattering, Polymer J., 16: 341 (1984).

    Article  CAS  Google Scholar 

  9. K.S. Kang, and G.T. Veeder, U.S. Pat. 4,342, 866 (1982).

    Google Scholar 

  10. P.E. Jansson, B. Lindberg, G. Widmalm, and P.A. Sandford, Structural studies of an extracellular polysaccharide (S-130) elaborated by Alcaligenes ATCC 31555, Carbohydr Res., 139: 217 (1985).

    CAS  Google Scholar 

  11. P.T. Attwool, E.T. Atkins, M.J. Miles and V.J. Morris, X-ray fibre diffraction results rom Alcaligenes (AATCC 31555) microbial polysaccharide S-130 and a comparison with getan gum, Carbohydr. Res., 148:C1 (1986).

    Article  CAS  Google Scholar 

  12. B.T. Stokke, A. Elgsaeter, G. Skjk-Brk, and O. Smidsrod, The molecular size and shape of xanthan, xylinan, bronchial mucin, alginate, and amylose as revealed by electron microscopy Carbohydr. Res. 160:13 (1987).

    Article  CAS  Google Scholar 

  13. M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28:350 (1956).

    Article  CAS  Google Scholar 

  14. J.M. Tyler, and D. Branton, Rotary shadowing of extended molecules dried from glycerol, J. Ultrastruct. Res., 71: 95 (1980).

    Article  CAS  Google Scholar 

  15. B.T. Stokke, A. Elgsaeter, and O. Smidsrod, Electron microscopic study of single-and double-stranded xanthan, Int. J. Biol. Macron*, 8: 217 (1986).

    Article  CAS  Google Scholar 

  16. M. Troll, K.R. Dill, and B.H. Zimm, Dynamics of polymer solutions. 3. An instrument for stress relaxations on dilute solutions of large polymer molecules, Macromolecules. 13: 436 (1980).

    Article  CAS  Google Scholar 

  17. H. Yamakawa, and T. Yoshizaki, Transport coeffecients of helical worm-like chains. 3. Intrinsic viscosity, Macromolecules. 13: 643 (1980).

    Article  Google Scholar 

  18. I.T. Norton, D. M. Goodall, S. A. Frangou, E.R. Morris, and D.A. Rees, Mechanism and dynamic conformational ordering in xanthan polysaccharide, J. Mol. Biol., 175:371 (1984).

    Article  CAS  Google Scholar 

  19. S. Paoletti, A. Cesaro, and F. Delben, Thermally induced conformational transition of xanthan polyelectrolyte, Carbohydr. Res., 123:173 (1983).

    Article  CAS  Google Scholar 

  20. G: Holzwarth, and E. B. Prestridge, Multistranded helix in Xanthan polysaccharide, Science 197: 757 (1977).

    Article  CAS  Google Scholar 

  21. S.L. Wellington, Xanthan gum molecular size distribution and configuration, Polym. Preprints. Prep. Div. Polym. Chem. Ass. Chem. Soc., 22:63 (1981).

    CAS  Google Scholar 

  22. C. Frontali, E. Dore, A. Ferrauto, E. Gratton, A Bettini, M.R. Pozzan, and E. Valdevit, An abolute method for the determination of the persistence length of native DNA from electron micrographs, Biopolymers 18: 1253 (1979).

    Google Scholar 

  23. B.A. Burton, and D.A. Brant, Comparative flexibility, extension and conformation of some simple polysaccharide chains, Biopolymers. 22:1769 (1983).

    Article  CAS  Google Scholar 

  24. G. Muller, J. Lecourtier, G. Chauveteau, and C. Allain, Conformation of the xanthan molecule in an ordered structure, Makromol. Chem. Rap. Commun. 5: 203 (1984)

    Article  CAS  Google Scholar 

  25. H. Hofman, T. Voss, K. Kuhn, and J. Engel, Localization of flexible sites in thread-like molecules from electron micrographs, J. Mol Biol.. 172:325 (1984).

    Article  Google Scholar 

  26. O. Smidsrrd, and A. Haug, Estimation of the relative stiffness of the molecular chain in polyelectrolytes from measurements of viscosity at different ionic strengths, Biopolymers. 10: 1231 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stokke, B.T., Smidsrød, O., Marthinsen, A.B.L., Elgsaeter, A. (1988). Conformational Analysis of Xanthan and Welan Using Electron Microscopy. In: Stahl, G.A., Schulz, D.N. (eds) Water-Soluble Polymers for Petroleum Recovery. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1985-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1985-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3209-9

  • Online ISBN: 978-1-4757-1985-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics