Advertisement

Behavior of Polyampholytes in Aqueous Salt Solution

  • J. C. Salamone
  • I. Ahmed
  • M. K. Raheja
  • P. Elayaperumal
  • A. C. Watterson
  • A. P. Olson
Chapter

Abstract

The role of ionic polymers in enhanced oil recovery is well recognized (1). Partially hydrolyzed polyacrylamide is the most widely used ionic polymer for this purpose as it produces a high viscosity in fresh water at a reasonable cost. However, anionic polyacrylamide rapidly looses its viscosity in solutions containing added electrolyte. In addition, polyacrylamides are sensitive to shear degradation.

Keywords

Shear Rate Intrinsic Viscosity Virial Coefficient Viscosity Data Increase Salt Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    For reviews, see articles presented in symposium entitled Polymers in Enhanced Oil Recovery, Polym. Prepr., 22 (2), (1981).Google Scholar
  2. 2).
    G. Ehrlich and P. Doty, J. Am. Chem. Soc., 76, 3764 (1954).CrossRefGoogle Scholar
  3. 3).
    R. Hart and D. Timmerman, J. Polym. Sci., 28, 638 (1958).CrossRefGoogle Scholar
  4. 4).
    J. C. Salamone and S. C. Israel, Polym. Prepr., 12 (2), 185 (1971).Google Scholar
  5. 5).
    J. C. Salamone, W. Volksen, S. C. Israel, and A. W. Wisniewski Appl. Polym. Symp., 26, 309 (1975).Google Scholar
  6. 6).
    J. C. Salamone, W. Volksen, A. P. Olson, and S. C. Israel, Polymer, 19, 1157 (1978).CrossRefGoogle Scholar
  7. 7).
    J. C. Salamone, A. C. Watterson, T. D. Hsu, C.C. Tsai, and M. U. Mahmud, J. Polym. Sci., Polym. Lett. Ed., 15, 487 (1977).Google Scholar
  8. 8).
    J. C. Salamone, C. C. Tsai, A. P. Olson, and A. C. Watterson, J. Polym. Sci., Polym. Chem. Ed., 18, 2983 (1980).Google Scholar
  9. 9).
    J. C. Salamone, C. C. Tsai, A. P. Olson, and A. C. Watterson, “Ions in Polymers,” A. Eisenberg, ed., Adv. Chem. Ser., 187, Chap.22 (1980).Google Scholar
  10. 10).
    J. C. Salamone, C. C. Tsai, A. C. Watterson, and A. P. Olson, “Polymeric Amines and Ammonium Salts,” E. Goethals, ed., Pergamon Press, New York, 1980, pp 105–112.Google Scholar
  11. 11).
    J. C. Salamone, M. K. Raheja, Q. Anwaruddin, and A. C. Watterson, J. Polym. Sci., Polym. Lett. Ed., 23, 12 (1985).Google Scholar
  12. 12).
    J. C. Salamone, N. A. Mahmud, M. U. Mahmud, T. Nagabhushanam, and A. C. Watterson, Polymer, 23, 843 (1982).CrossRefGoogle Scholar
  13. 13).
    J. C. Salamone, L. Quach, A. C. Watterson, S. Krauser, and M. U. Mahmud, J. Macromol. Sci.-Chem., A22, 653 (1985).CrossRefGoogle Scholar
  14. 14).
    M. B. Huglin, “Light Scattering from Polymer Solutions,” Academic Press, London, 1972, Chaps. 15and16.Google Scholar
  15. 15).
    B. H. Zimm, J. Chem. Phys., 16, 1099 (1948).CrossRefGoogle Scholar
  16. 16).
    M. L. Huggins, J. Am. Chem. Soc., 64, 2716 (1942).CrossRefGoogle Scholar
  17. 17).
    M. Bohdanecky and J. Kovar, “Viscosity of Polymer Solutions,” A. D. Jenkins, ed., Elsevier Sci. Publ. Co., New York, 1982, Chap. 3.Google Scholar
  18. 18).
    J. M. Peterson and M. Fixman, J. Chem. Phy., 39, 2516 (1963).CrossRefGoogle Scholar
  19. 19).
    T. Sakai, J. Polm. Sci., A2 (6), 1535 (1968).Google Scholar
  20. 20).
    A. Einstein, Am. Phys. Leipzig, 19, 289 (1906).CrossRefGoogle Scholar
  21. 21).
    R. Simha, J. Phys. Chem., 44, 25 (1940).CrossRefGoogle Scholar
  22. 22).
    U. P. Strauss, and N. L. Gershfeld, J. Phys. Chem., 58, 747 (1954).CrossRefGoogle Scholar
  23. 23).
    U. P. Strauss, N. L. Gershfeld, and E. H. Crook, J. Phys. Chem., 60, (1956).Google Scholar
  24. 24).
    C. Tanford, “Physical Chemistry of Macromolecules,” J. Willey and Sons, Inc., New York, 1961, p. 130.Google Scholar
  25. 25).
    C. Wolff, A. Silberberg, Z. Priel, and M. N. Layec-Raphalen, Polymer, 20, 281 (1979).CrossRefGoogle Scholar
  26. 26).
    J. G. Watterson and H. G. Elias, Makromol. Chem., 157, 237 (1972).CrossRefGoogle Scholar
  27. 27).
    V. M. M. Soto and J. C. Galin, Polymer, 25, 254 (1984).CrossRefGoogle Scholar
  28. 28).
    D. N. Schulz, D. G. Peiffer, P. K. Agarwal, J. Larabee, J. J. Kaladas, L. Soni, B. Handwerker, and R. T. Garner, Polymer, 27, 1734 (1986).CrossRefGoogle Scholar
  29. 29).
    H. Morawetz, “Macromolecules in Solution,” 2nd ed., J. Wiley and Sons, Inc., New York, 1975, Chap. VI.Google Scholar
  30. 30).
    D. G. Peiffer and R. D. Lundberg, Polymer, 26 (7), 1085 (1985).CrossRefGoogle Scholar
  31. 31).
    H. Morawetz, “Macromolecules in Solution,” 2nd ed., J. Wiley and Sons, Inc., New York, 1975, Chap. II.Google Scholar
  32. 32).
    U. P. Strauss and Y. P. Leung, J. Am. Chem. Soc., 87, 1476 (1965).CrossRefGoogle Scholar
  33. 33).
    U. P. Strauss, C. Helfgott, and H. Pink, J. Phys. Chem., 71, 2555 (1967).CrossRefGoogle Scholar
  34. 34).
    B. E. Boyd and K. Bunzl, J. Am. Chem. Soc., 96, 2054 (1974).CrossRefGoogle Scholar
  35. 35).
    T. Ooi, J. Polym. Sci., 28, 459 (1958).CrossRefGoogle Scholar
  36. 36).
    L. H. Tung, J. Polym. Sci., 2A, 4875 (1964).Google Scholar
  37. 37).
    Van R. Wijk and A. J. Staverman, J. Polym. Sci., A2, 1011 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • J. C. Salamone
    • 1
  • I. Ahmed
    • 1
  • M. K. Raheja
    • 1
  • P. Elayaperumal
    • 1
  • A. C. Watterson
    • 1
  • A. P. Olson
    • 1
  1. 1.Polymer Science Program Department of ChemistryUniversity of LowellLowellUSA

Personalised recommendations